scispace - formally typeset
Search or ask a question

Showing papers by "Taylor H. Ricketts published in 2012"


Journal ArticleDOI
21 Mar 2012-PLOS ONE
TL;DR: While appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites, and better targeted expansion of PA networks would help to improve biodiversity trends.
Abstract: Protected areas (PAs) are a cornerstone of conservation efforts and now cover nearly 13% of the world’s land surface, with the world’s governments committed to expand this to 17%. However, as biodiversity continues to decline, the effectiveness of PAs in reducing the extinction risk of species remains largely untested. We analyzed PA coverage and trends in species’ extinction risk at globally significant sites for conserving birds (10,993 Important Bird Areas, IBAs) and highly threatened vertebrates and conifers (588 Alliance for Zero Extinction sites, AZEs) (referred to collectively hereafter as ‘important sites’). Species occurring in important sites with greater PA coverage experienced smaller increases in extinction risk over recent decades: the increase was half as large for bird species with.50% of the IBAs at which they occur completely covered by PAs, and a third lower for birds, mammals and amphibians restricted to protected AZEs (compared with unprotected or partially protected sites). Globally, half of the important sites for biodiversity conservation remain unprotected (49% of IBAs, 51% of AZEs). While PA coverage of important sites has increased over time, the proportion of PA area covering important sites, as opposed to less important land, has declined (by 0.45–1.14% annually since 1950 for IBAs and 0.79–1.49% annually for AZEs). Thus, while appropriately located PAs may slow the rate at which species are driven towards extinction, recent PA network expansion has under-represented important sites. We conclude that better targeted expansion of PA networks would help to improve biodiversity trends.

398 citations


Journal ArticleDOI
TL;DR: A conceptual framework envisioned by the GEO BON Ecosystem Services Working Group is presented, designed to integrate national statistics, numerical models, remote sensing, and in situ measurements to regularly track changes in ecosystem services across the globe.
Abstract: Earth's life-support systems are in flux, yet no centralized system to monitor and report these changes exists. Recognizing this, 77 nations agreed to establish the Group on Earth Observations (GEO). The GEO Biodiversity Observation Network (GEO BON) integrates existing data streams into one platform in order to provide a more complete picture of Earth's biological and social systems. We present a conceptual framework envisioned by the GEO BON Ecosystem Services Working Group, designed to integrate national statistics, numerical models, remote sensing, and in situ measurements to regularly track changes in ecosystem services across the globe. This information will serve diverse applications, including stimulating new research and providing the basis for assessments. Although many ecosystem services are not currently measured, others are ripe for reporting. We propose a framework that will continue to grow and inspire more complete observation and assessments of our planet's life-support systems.

157 citations