scispace - formally typeset
Search or ask a question

Showing papers by "Teresa Klinowska published in 2014"


Journal ArticleDOI
TL;DR: A novel structurally distinct third-generation EGFR TKI that irreversibly and selectively targets both sensitizing and resistant T790M(+) mutant EGFR while harboring less activity toward wild-type EGFR is reported.
Abstract: First-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provide significant clinical benefit in patients with advanced EGFR-mutant (EGFRm+) non–small cell lung cancer (NSCLC). Patients ultimately develop disease progression, often driven by acquisition of a second T790M EGFR TKI resistance mutation. AZD9291 is a novel oral, potent, and selective third-generation irreversible inhibitor of both EGFRm+ sensitizing and T790M resistance mutants that spares wild-type EGFR. This mono-anilino–pyrimidine compound is structurally distinct from other third-generation EGFR TKIs and offers a pharmacologically differentiated profile from earlier generation EGFR TKIs. Preclinically, the drug potently inhibits signaling pathways and cellular growth in both EGFRm+ and EGFRm+/T790M+ mutant cell lines in vitro, with lower activity against wild-type EGFR lines, translating into profound and sustained tumor regression in EGFR-mutant tumor xenograft and transgenic models. The treatment of 2 patients with advanced EGFRm+ T790M+ NSCLC is described as proof of principle. Significance: We report the development of a novel structurally distinct third-generation EGFR TKI, AZD9291, that irreversibly and selectively targets both sensitizing and resistant T790M+ mutant EGFR while harboring less activity toward wild-type EGFR. AZD9291 is showing promising responses in a phase I trial even at the first-dose level, with first published clinical proof-of-principle validation being presented. Cancer Discov; 4(9); 1046–61. ©2014 AACR. This article is highlighted in the In This Issue feature, p. 973

1,561 citations


Journal ArticleDOI
TL;DR: Following observations of significant tumor inhibition in preclinical models, the clinical candidate AZD9291 was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, accompanied by an encouraging safety profile.
Abstract: Epidermal growth factor receptor (EGFR) inhibitors have been used clinically in the treatment of non-small-cell lung cancer (NSCLC) patients harboring sensitizing (or activating) mutations for a number of years Despite encouraging clinical efficacy with these agents, in many patients resistance develops leading to disease progression In most cases, this resistance is in the form of the T790M mutation In addition, EGFR wild type receptor inhibition inherent with these agents can lead to dose limiting toxicities of rash and diarrhea We describe herein the evolution of an early, mutant selective lead to the clinical candidate AZD9291, an irreversible inhibitor of both EGFR sensitizing (EGFRm+) and T790M resistance mutations with selectivity over the wild type form of the receptor Following observations of significant tumor inhibition in preclinical models, the clinical candidate was administered clinically to patients with T790M positive EGFR-TKI resistant NSCLC and early efficacy has been observed, acc

457 citations


Journal ArticleDOI
TL;DR: The data suggests that the ER degrader fulvestrant, to block both ligand-dependent and -independent ER signaling, combined with an AKT inhibitor is an effective strategy to test in patients.
Abstract: Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance. Altered cellular signaling, gene expression, and endocrine sensitivity were determined in inducible PTEN-knockdown ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer cell and/or xenograft models. Single or two-agent combinations of kinase inhibitors were examined to improve endocrine therapy. Moderate PTEN reduction was sufficient to enhance PI3K signaling, generate a gene signature associated with the luminal B subtype of breast cancer, and cause endocrine resistance in vitro and in vivo. The mammalian target of rapamycin (mTOR), protein kinase B (AKT), or mitogen-activated protein kinase kinase (MEK) inhibitors, alone or in combination, improved endocrine therapy, but the efficacy varied by PTEN levels, type of endocrine therapy, and the specific inhibitor(s). A single-agent AKT inhibitor combined with fulvestrant conferred superior efficacy in overcoming resistance, inducing apoptosis and tumor regression. Moderate reduction in PTEN, without complete loss, can activate the PI3K pathway to cause endocrine resistance in ER-positive breast cancer, which can be overcome by combining endocrine therapy with inhibitors of the PI3K pathway. Our data suggests that the ER degrader fulvestrant, to block both ligand-dependent and -independent ER signaling, combined with an AKT inhibitor is an effective strategy to test in patients.

64 citations


Journal ArticleDOI
TL;DR: Evidence is provided that AZD8931 has greater inhibitory efficacy in tamoxifen-resistant settings than in an endocrine therapy naïve setting and the absence of tumor regression suggests that additional escape pathways contribute to resistant growth and will need to be targeted to fully circumvent tamoxIFen resistance.
Abstract: Modest up-regulation of either HER-ligands or receptors has been implicated in acquired endocrine resistance. AZD8931, a dual tyrosine kinase inhibitor (TKI) of epithelial growth factor receptor (EGFR)/HER2, has been shown to more effectively block ligand-dependent HER signaling than the HER TKIs lapatinib or gefitinib. We therefore examined the effect of AZD8931 in ER-positive/HER2-negative breast cancer cells with acquired resistance to tamoxifen, where there is ligand up-regulation associated with HER pathway activation. RNA-seq ligand profiling and levels of HER receptors and signaling by western blotting were conducted in ER+ MCF7 and T47D parental cells and their Tam-resistant derivatives (TamRes). In vitro cell growth and apoptosis and HER ligand-stimulated signaling were measured in response to endocrine and HER TKIs. For studies in vivo, transplantable MCF7/TamRes xenografts were treated with tamoxifen or fulvestrant, either alone or in combination with AZD8931. AZD8931 only minimally enhanced endocrine sensitivity in MCF7 parental cells, but showed a greater effect in the T47D parental model. AZD8931 combined with either tamoxifen or fulvestrant inhibited cell growth more than lapatinib in T47D TamRes cells, and was also significantly, though modestly, more potent in MCF7 TamRes cells. In both TamRes models, AZD8931 significantly inhibited cell proliferation and induced apoptosis. Under ligand-stimulated conditions, AZD8931 more potently inhibited HER signaling than lapatinib or gefitinib. AZD8931 also significantly delayed the growth of MCF7 TamRes xenografts in the presence of tamoxifen or fulvestrant. The strongest inhibition was achieved with a fulvestrant and AZD8931 combination, though no tumor regression was observed. This study provides evidence that AZD8931 has greater inhibitory efficacy in tamoxifen-resistant settings than in an endocrine therapy naive setting. The absence of tumor regression, however, suggests that additional escape pathways contribute to resistant growth and will need to be targeted to fully circumvent tamoxifen resistance.

51 citations


Journal ArticleDOI
TL;DR: AZD8931 single agent and in combination with paclitaxel demonstrated signal inhibition and antitumor activity in EGFR-overexpressed and HER2 non-amplified IBC models, suggesting that AZD 8931 may provide a novel therapeutic strategy for the treatment of IBC patients with HER2Non-amPLified tumors.
Abstract: Introduction Epidermal growth factor receptor (EGFR) overexpression has been associated with prognostic and predictive value in inflammatory breast cancer (IBC). Epidermal growth factor receptor 2 (HER2) overexpression is observed at a higher rate in IBC compared with noninflammatory breast cancer. Current clinically available anti-HER2 therapies are effective only in patients with HER2 amplified breast cancer, including IBC. AZD8931 is a novel small-molecule equipotent inhibitor of EGFR, HER2, and HER3 signaling. In this study, we investigated the antitumor activity of AZD8931 alone or in combination with paclitaxel using preclinical models of EGFR-overexpressed and HER2 non-amplified IBC cells.

23 citations


Journal ArticleDOI
TL;DR: Resistance to a novel pan-HER inhibitor, AZD8931, is explored, mechanisms of resistance common to trastuzumab, lapatinib and AZD 8931 are examined, and the current problems associated with translating the wealth of pre-clinical data into clinical benefit are discussed.
Abstract: HER2 (human epidermal growth factor receptor 2)-targeted therapy in breast cancer is one of the earliest and arguably most successful examples of the modern class of targeted drugs. Initially identified in the 1980s, the observation that HER2 acts as an independent predictor of poor prognosis in the 20% of breast cancer cases carrying a gene amplification or protein overexpression cemented its place at the forefront of research in this field. The outlook for patients with HER2-positive breast cancer has been revolutionized by the introduction of HER2-targeted agents, such as trastuzumab and lapatinib, yet resistance is frequently encountered and multiple different resistance mechanisms have been identified. We have explored resistance to a novel pan-HER inhibitor, AZD8931, and we examine mechanisms of resistance common to trastuzumab, lapatinib and AZD8931, and discuss the current problems associated with translating the wealth of pre-clinical data into clinical benefit.

18 citations