scispace - formally typeset
Search or ask a question

Showing papers by "Thomas Simmet published in 2009"


Journal ArticleDOI
TL;DR: Findings provide, for the first time, evidence in vivo that XIAP inhibitors prime pancreatic carcinoma cells for TRAIL-induced apoptosis and potentiate the antitumor activity of TRAIL against established pancreatic cancer.
Abstract: Evasion of apoptosis is a characteristic feature of pancreatic cancer, a prototypic cancer that is refractory to current treatment approaches. Hence, there is an urgent need to design rational strategies that counter apoptosis resistance. To explore X-linked inhibitor of apoptosis (XIAP) as a therapeutic target in pancreatic cancer, we analyzed the expression of XIAP in pancreatic tumor samples and evaluated the effect of small molecule XIAP inhibitors alone and in combination with tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) against pancreatic carcinoma in vitro and in vivo. Here, we report that XIAP is highly expressed in pancreatic adenocarcinoma samples compared with normal pancreatic ducts. Small molecule XIAP inhibitors synergize with TRAIL to induce apoptosis and to inhibit long-term clonogenic survival of pancreatic carcinoma cells. In contrast, they do not reverse the lack of toxicity of TRAIL on nonmalignant cells in vitro or normal tissues in vivo , pointing to a therapeutic index. Most importantly, XIAP inhibitors cooperate with TRAIL to trigger apoptosis and suppress pancreatic carcinoma growth in vivo in two preclinical models, i.e., the chorioallantoic membrane model and a mouse xenograft model. Parallel immunohistochemical analysis of tumor tissue under therapy reveals that the XIAP inhibitor acts in concert with TRAIL to cause caspase-3 activation and apoptosis. In conclusion, our findings provide, for the first time, evidence in vivo that XIAP inhibitors prime pancreatic carcinoma cells for TRAIL-induced apoptosis and potentiate the antitumor activity of TRAIL against established pancreatic carcinoma. These findings build the rationale for further (pre)clinical development of XIAP inhibitors and TRAIL against pancreatic cancer. [Cancer Res 2009;69(6):2425–34]

152 citations


Journal ArticleDOI
03 Dec 2009-Blood
TL;DR: It is demonstrated that human plasmacytoid dendritic cells can be an abundant source of GrB and that such GrB(+) pDCs potently suppress T-cell proliferation in a GrB-dependent, perforin-independent manner, a process reminiscent of regulatory T cells.

142 citations


Journal ArticleDOI
TL;DR: These findings suggest that GrB-secreting B cells support the early antiviral immune response against viruses with endosomal entry pathways, thereby counteracting overwhelming viral replication at the beginning of an infection until virus-specific T cells from draining lymph nodes arrive at the site of infection.
Abstract: Human B cells are currently not known to produce the proapoptotic protease granzyme B (GrB) in physiological settings. We have discovered that BCR stimulation with either viral Ags or activating Abs in the context of the acute phase cytokine IL-21 can induce the secretion of substantial amounts of GrB by human B cells. Importantly, GrB response to viral Ags was significantly stronger in B cells from subjects recently vaccinated against the corresponding viruses as compared with unvaccinated subjects. GrB-secreting B cells featured a homogeneous CD19(+)CD20(+)CD27(-)CD38(-)IgD(-) phenotype, improved survival, and enhanced expression of costimulatory, Ag-presenting and cell-adhesion molecules. B cell-derived GrB was enzymatically active and its induction required the activation of similar signaling pathways as those in CTLs. Our findings suggest that GrB-secreting B cells support the early antiviral immune response against viruses with endosomal entry pathways, thereby counteracting overwhelming viral replication at the beginning of an infection until virus-specific T cells from draining lymph nodes arrive at the site of infection. Our data may also explain the elevated serum GrB levels found in the early phase of various viral diseases.

111 citations


Journal ArticleDOI
TL;DR: It is demonstrated that NF-κB signaling is pivotal for the pathogenesis in the CD18hypo mouse model of psoriasis, and targeting NF-β kinase inhibitor might provide an effective strategy for the treatment of Psoriasis.
Abstract: Psoriasis vulgaris is a common chronic inflammatory skin disease involving cytokines and an activated cellular immune system. At variance to skin from patients with atopic dermatitis or from healthy subjects, human psoriatic skin lesions exhibit strong activation of transcription factor NF-kappaB that is mainly confined to dermal macrophages, whereas only a few dendritic cells but no CD3+ lymphocytes show activated NF-kappaB. Since NF-kappaB signaling is required for the induction and/or function of many cytokines and aberrant cytokine expression has been proposed as an underlying cause of psoriasis, we investigated whether NF-kappaB targeting would affect the course of the disease in the CD18 hypomorphic (CD18(hypo)) mouse model of psoriasis. When mice with severe psoriasiform lesions were treated systemically or locally with the IkappaB kinase inhibitor acetyl-11-keto-beta-boswellic acid (AKbetaBA), NF-kappaB signaling and the subsequent NF-kappaB-dependent cytokine production as shown by the TNF-alpha production of macrophages were profoundly suppressed. Additionally, application of the compound counteracted the intradermal MCP-1, IL-12, and IL-23 expression in previously lesional skin areas, led to resolution of the abundant immune cell infiltrates, and significantly reduced the increased proliferation of the keratinocytes. Overall, the AKbetaBA treatment was accompanied by a profound improvement of the psoriasis disease activity score in the CD18(hypo) mice with reconstitution of a nearly normal phenotype within the chosen observation period. Our data demonstrate that NF-kappaB signaling is pivotal for the pathogenesis in the CD18(hypo) mouse model of psoriasis. Therefore, targeting NF-kappaB might provide an effective strategy for the treatment of psoriasis.

83 citations


Journal ArticleDOI
TL;DR: In this article, platelet glycoprotein VI (GPVI) was identified as a novel adhesion receptor for EMMPRIN, which can mediate platelet rolling via GPVI-EMMPRIN interaction.
Abstract: The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147, basigin) is an immunoglobulin-like receptor expressed in various cell types. During cellular interactions homotypic EMMPRIN-EMMPRIN interactions are known to induce the synthesis of matrix metalloproteinases. Recently, we have identified EMMPRIN as a novel receptor on platelets. To our knowledge EMMPRIN has not been shown to serve as adhesion receptor, yet. Here we characterise platelet glycoprotein VI (GPVI) as a novel adhesion receptor for EMMPRIN. Human platelets were prestimulated with ADP and perfused over immobilised recombinant EMMPRIN-Fc or Fc-fragments under arterial shear conditions. ADP-stimulated platelets showed significantly enhanced rolling (but not enhanced firm adhesion) on immobilised EMMPRIN-Fc compared to Fc. Pretreatment of platelets with blocking mAbs anti-EMMPRIN or anti-GPVI leads to a significant reduction of rolling platelets on immobilised EMMPRIN-Fc, whereas pretreatment with blocking mAbs anti-p-selectin, anti-alpha4-integrin or anti-GPIIb/IIIa complex (20 microg/ml each) had no effect. Consistently, chinese hamster ovary (CHO) cells stably transfected with GPVI showed enhanced rolling (but not adhesion) on immobilised EMMPRIN-Fc in comparison to non-transfected CHO cells. Similarly, CHO cells stably transfected with EMMPRIN showed enhanced rolling on immobilised GPVI-Fc (or EMMPRIN-Fc) compared to non transfected CHO-cells. Finally, specific binding of EMMPRIN to GPVI was demonstrated by a modified ELISA and surface plasmon resonance technology with a dissociation constant of 88 nM. Platelet GPVI is a novel receptor for EMMPRIN and can mediate platelet rolling via GPVI-EMMPRIN interaction.

68 citations