scispace - formally typeset
Search or ask a question

Showing papers by "Tobias G. Köllner published in 2017"


Journal ArticleDOI
TL;DR: It is shown that in the night-flowering wild tobacco Nicotiana attenuata, the emission of a sesquiterpene, (E)-α-bergamotene, in flowers increases adult Manduca sexta moth-mediated pollination success, while the same compound in leaves is known to mediate indirect defense against M.Sexta larvae.

56 citations


Journal ArticleDOI
TL;DR: In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites and unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding nonvolatile antibiotic derivative β-costic acid.
Abstract: To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding nonvolatile antibiotic derivative β-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 (ZmTps21) on chromosome 9 as a β-costic acid pathway candidate gene. Numerous closely examined β-costic acid-deficient inbred lines were found to harbor Zmtps21 pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length ZmTps21 was cloned, heterologously expressed in Escherichia coli, and demonstrated to cyclize farnesyl diphosphate, yielding β-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed β-costic acid levels over 100 μg g-1 fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.

52 citations


Journal ArticleDOI
TL;DR: Two diterpene cyclases, one from the social amoeba Dictyostelium discoideum and the other from the bacterium Streptomyces clavuligerus, with products containing a Z-configured double bond between the original C2 and C3 of geranylgeranyl diphosphate were extensively investigated for their mechanisms through isotopic labelling experiments.
Abstract: Two diterpene cyclases, one from the social amoeba Dictyostelium discoideum and the other from the bacterium Streptomyces clavuligerus, with products containing a Z-configured double bond between the original C2 and C3 of geranylgeranyl diphosphate, were extensively investigated for their mechanisms through isotopic labelling experiments. The participation of geranyllinalyl diphosphate, in analogy to the role of linalyl and nerolidyl diphosphate for mono- and sesquiterpene biosynthesis, as an intermediate towards diterpenes with a Z-configured C2=C3 double bond is discussed.

49 citations


Journal ArticleDOI
TL;DR: Phylogenetic analysis suggests that ancestral MTPSL genes were acquired by early land plants from bacteria and fungi through horizontal gene transfer.

44 citations


Journal ArticleDOI
TL;DR: It is shown that GmAFS has defence roles in both below‐ground and above‐ground organs of soybean against nematodes and insects, respectively.
Abstract: Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here, we report the functional characterization of one member of the soybean TPS gene family, which was designated GmAFS. Recombinant GmAFS produced in Escherichia coli catalysed the formation of a sesquiterpene (E,E)-α-farnesene. GmAFS is closely related to (E,E)-α-farnesene synthase gene from apple, both phylogenetically and structurally. GmAFS was further investigated for its biological role in defence against nematodes and insects. Soybean cyst nematode (SCN) is the most important pathogen of soybean. The expression of GmAFS in a SCN-resistant soybean was significantly induced by SCN infection compared with the control, whereas its expression in a SCN-susceptible soybean was not changed by SCN infection. Transgenic hairy roots overexpressing GmAFS under the control of the CaMV 35S promoter were generated in an SCN-susceptible soybean line. The transgenic lines showed significantly higher resistance to SCN, which indicates that GmAFS contributes to the resistance of soybean to SCN. In soybean leaves, the expression of GmAFS was found to be induced by Tetranychus urticae (two-spotted spider mites). Exogenous application of methyl jasmonate to soybean plants also induced the expression of GmAFS in leaves. Using headspace collection combined with gas chromatography-mass spectrometry analysis, soybean plants that were infested with T. urticae were shown to emit a mixture of volatiles with (E,E)-α-farnesene as one of the most abundant constituents. In summary, this study showed that GmAFS has defence roles in both below-ground and above-ground organs of soybean against nematodes and insects, respectively.

34 citations


Journal ArticleDOI
TL;DR: CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms, and taxiphyllin was the only cyanogenic glycoside found in the different organs of T. baccata.
Abstract: Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert l-tyrosine, l-tryptophan, and l-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that l-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from l-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

27 citations


Journal ArticleDOI
TL;DR: Variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes, so other candidate terpene synthases as well as other levels of regulation must also be involved.
Abstract: Terpene rich leaves are a characteristic of Myrtaceae. There is significant qualitative variation in the terpene profile of plants within a single species, which is observable as “chemotypes”. Understanding the molecular basis of chemotypic variation will help explain how such variation is maintained in natural populations as well as allowing focussed breeding for those terpenes sought by industry. The leaves of the medicinal tea tree, Melaleuca alternifolia, are used to produce terpinen-4-ol rich tea tree oil, but there are six naturally occurring chemotypes; three cardinal chemotypes (dominated by terpinen-4-ol, terpinolene and 1,8-cineole, respectively) and three intermediates. It has been predicted that three distinct terpene synthases could be responsible for the maintenance of chemotypic variation in this species. We isolated and characterised the most abundant terpene synthases (TPSs) from the three cardinal chemotypes of M. alternifolia. Functional characterisation of these enzymes shows that they produce the dominant compounds in the foliar terpene profile of all six chemotypes. Using RNA-Seq, we investigated the expression of these and 24 additional putative terpene synthases in young leaves of all six chemotypes of M. alternifolia. Despite contributing to the variation patterns observed, variation in gene expression of the three TPS genes is not enough to explain all variation for the maintenance of chemotypes. Other candidate terpene synthases as well as other levels of regulation must also be involved. The results of this study provide novel insights into the complexity of terpene biosynthesis in natural populations of a non-model organism.

17 citations


Journal ArticleDOI
TL;DR: The funding note for Open Access publication was not properly provided in the original publication and the opening line of the Acknowledgement section should read:.
Abstract: Due to an unfortunate turn of events, the funding note for Open Access publication was not properly provided in the original publication. Hence, the original article has been corrected. The opening line of the Acknowledgement section should read.

2 citations