scispace - formally typeset
Search or ask a question

Showing papers by "Vi Khanh Truong published in 2018"


Journal ArticleDOI
TL;DR: Several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated.
Abstract: One of the major challenges faced by the biomedical industry is the development of robust synthetic surfaces that can resist bacterial colonization. Much inspiration has been drawn recently from naturally occurring mechano-bactericidal surfaces such as the wings of cicada (Psaltoda claripennis) and dragonfly (Diplacodes bipunctata) species in fabricating their synthetic analogs. However, the bactericidal activity of nanostructured surfaces is observed in a particular range of parameters reflecting the geometry of nanostructures and surface wettability. Here, several of the nanometer-scale characteristics of black silicon (bSi) surfaces including the density and height of the nanopillars that have the potential to influence the bactericidal efficiency of these nanostructured surfaces have been investigated. The results provide important evidence that minor variations in the nanoarchitecture of substrata can substantially alter their performance as bactericidal surfaces.

64 citations


Journal ArticleDOI
TL;DR: The range of these controlling parameters may provide new design principles for the evolving suite of physical anti-biofouling materials not reliant on biocidal agents under development.
Abstract: Wrinkled patterns, which possess an extensive surface area over a limited planar space, can provide surface features ranging across the nano- and microscale that have become an engineering material with the flexibility to be tuneable for a number of technologies. Here, we investigate the surface parameters that influence the attachment response of two model bacteria (P. aeruginosa and S. aureus) to wrinkled gold-coated polystyrene surfaces having topologies at the nano- and microscale. Together with flat gold films as the controls, surface feature heights spanned 2 orders of magnitude (15 nm, 200 nm, and 1 micron). The surface wrinkle topology was shown through confocal laser scanning microscopic, atomic force microscopic and scanning electron microscopic image analyses to consist of air-water interfacial areas unavailable for bacterial attachment, which were also shown to be stable by time-lapsed contact angle measurements. Imposition of the nanoscale wrinkles reduced P. aeruginosa attachment to 57% and S. aureus attachment to 20% of their flat equivalent surfaces whereas wrinkles at the microscale further reduced these attachments to 7.5% and 14.5%, respectively. The density of attachments indicated an inherent species specific selectivity that changed with feature dimension, attributable to the scale of the air-water interfaces in contact with the bacterial cell. Parameters influencing static bacterial attachment were the total projected surface areas minus the air-water interface areas and the scale of these respective air-water interfaces (area distribution) with respect to the cell morphology. The range of these controlling parameters may provide new design principles for the evolving suite of physical anti-biofouling materials not reliant on biocidal agents under development.

34 citations


Journal ArticleDOI
05 Jun 2018
TL;DR: A comparison of relevant wing surface characteristics of seven species of dragonfly from three families including Libellulidae, Aeshnidae, and Gomphidae is provided, finding the chemical composition and the resultant wing surface superhydrophobicity were found to be well-conserved across all of the species studied.
Abstract: Dragonfly wings are of great interest to researchers investigating biomimetic designs for antiwetting and antibacterial surfaces. The waxy epicuticular layer on the membrane of dragonfly wings possesses a unique surface nanoarchitecture that consists of irregular arrays of nanoscale pillars. This architecture confers superhydrophobic, self-cleaning, antiwetting, and antibiofouling behaviors. There is some evidence available that suggests that lifestyle factors may have influenced the evolution of the wing nanostructures and, therefore, the resulting properties of the wings; however, it appears that no systematic studies have been performed that have compared the wing surface features across a range of dragonfly species. Here, we provided a comparison of relevant wing surface characteristics, including chemical composition, wettability, and nanoarchitecture, of seven species of dragonfly from three families including Libellulidae, Aeshnidae, and Gomphidae. The characteristic nanopillar arrays were found to...

17 citations


Journal ArticleDOI
TL;DR: This study investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation and found that bactericidal Nanostructured surfaces enhanced the attachment of neuron-like cells.
Abstract: Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

13 citations


Journal ArticleDOI
TL;DR: The wings of the damselfly Calopteryx haemorrhoidalis, whose males have dark pigmented wings and females have slightly pigmented Wings, are investigated for characterizing the nanostructure and the elemental distribution of the wings, respectively.
Abstract: Insects represent the majority of known animal species and exploit a variety of fascinating nanotechnological concepts. We investigated the wings of the damselfly Calopteryx haemorrhoidalis, whose males have dark pigmented wings and females have slightly pigmented wings. We used scanning electron microscopy (SEM) and nanoscale synchrotron X-ray fluorescence (XRF) microscopy analysis for characterizing the nanostructure and the elemental distribution of the wings, respectively. The spatially resolved distribution of the organic constituents was examined by synchrotron Fourier transform infrared (s-FTIR) microspectroscopy and subsequently analyzed using hierarchical cluster analysis. The chemical distribution across the wing was rather uniform with no evidence of melanin in female wings, but with a high content of melanin in male wings. Our data revealed a fiber-like structure of the hairs and confirmed the presence of voids close to its base connecting the hairs to the damselfly wings. Within these voids, all detected elements were found to be locally depleted. Structure and elemental contents varied between wing membranes, hairs and veins. The elemental distribution across the membrane was rather uniform, with higher Ca, Cu and Zn levels in the male damselfly wing membranes.

10 citations


Journal ArticleDOI
TL;DR: In this study, infrared (IR) microspectroscopy, coupled with the highly collimated synchrotron IR beam, was employed in order to identify the distribution of the pigments in the wings at a high spatial resolution and it was found that the melanin is localized in the procuticle of the C. haemorrhoidalis damselfly wings.
Abstract: Damselflies Calopteryx haemorrhoidalis exhibiting black wings are found in the western Mediterranean, Algeria, France, Italy, Spain and Monaco. Wing pigmentation is caused by the presence of melanin, which is involved in physiological processes including defence reactions, wound healing and sclerotization of the insect. Despite the important physiological roles of melanin, the presence and colour variation among males and females of the C. haemorrhoidalis species and the localization of the pigment within the wing membrane remain poorly understood. In this study, infrared (IR) microspectroscopy, coupled with the highly collimated synchrotron IR beam, was employed in order to identify the distribution of the pigments in the wings at a high spatial resolution. It was found that the melanin is localized in the procuticle of the C. haemorrhoidalis damselfly wings, distributed homogeneously within this layer, and not associated with the lipids of the epicuticle.

1 citations



Proceedings ArticleDOI
26 Mar 2018
TL;DR: In this paper, the authors presented advances in surface characterisation achieved using in-house developed synchrotron macro ATR-FTIR microspectroscopic devices at Australian Synchroron.
Abstract: This work presents advances in surface characterisation achieved using in-house developed synchrotron macro ATR-FTIR microspectroscopic devices at Australian Synchrotron. Successful applications include single fibres, surface coatings, food and biomedical sciences as well as zoology and entomology.