scispace - formally typeset
Search or ask a question

Showing papers by "W. W. Johnson published in 2010"


Journal ArticleDOI
J. Abadie1, B. P. Abbott1, R. Abbott1, M. R. Abernathy2  +719 moreInstitutions (79)
TL;DR: In this paper, Kalogera et al. presented an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo.
Abstract: We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.

1,011 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based LIGO and Virgo Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters.
Abstract: We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the Initial and Advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters, and are still uncertain The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our Galaxy These yield a likely coalescence rate of 100 per Myr per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 per Myr per MWEG to 1000 per Myr per MWEG We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our Advanced detectors Using the detector sensitivities derived from these data, we find a likely detection rate of 002 per year for Initial LIGO-Virgo interferometers, with a plausible range between 00002 and 02 per year The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 04 and 400 per year

918 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, Fausto Acernese2, Fausto Acernese3  +702 moreInstitutions (85)
TL;DR: In this article, an updated search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors was presented, where ephemerides overlapping the run period were obtained using radio and X-ray observations.
Abstract: We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of seven below the spin-down limit. This limits the power radiated via gravitational waves to be less than ~2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars several of the measured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3x10^-26 for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0x10^-8 for J2124-3358.

187 citations


Journal ArticleDOI
J. Abadie1, B. P. Abbott1, Richard J. Abbott1, M. R. Abernathy2  +551 moreInstitutions (57)
TL;DR: In this paper, the authors describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation, for the LIGO data set of the fifth science run (S5).
Abstract: The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space–time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.

138 citations


Journal ArticleDOI
J. Abadie1, B. P. Abbott1, Richard J. Abbott1, T. Accadia2  +678 moreInstitutions (76)
TL;DR: In this article, the authors search for known gravitational-wave signatures in temporal and directional coincidence with 22 short gamma-ray bursts (shortGRBs) that had sufficient gravitationalwave data available in multiple instruments during LIGO's fifth science run,============S5, and Virgo's first science run VSR1.
Abstract: Progenitor scenarios for short gamma-ray bursts (shortGRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO’s fifth science run, S5, and Virgo’s first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [−5, +1) s window around the trigger time of any GRB. Using the Wilcoxon–Mann–Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star–black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc.

119 citations


Journal ArticleDOI
J. Abadie1, B. P. Abbott1, Richard J. Abbott1, M. R. Abernathy2  +544 moreInstitutions (58)
TL;DR: In this paper, the authors present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory.
Abstract: We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.7-1.2) × 10–24 on the intrinsic gravitational-wave strain, (0.4-4) × 10–4 on the equatorial ellipticity of the neutron star, and 0.005-0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude.

115 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12-day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory.
Abstract: We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12-day interval taken from the fifth science run of the Laser Interferometer Gravitational-Wave Observatory. It searches gravitational wave frequencies from 100 to 300 Hz, and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spin-down mechanisms. No gravitational wave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of 0.7--1.2e-24 on the intrinsic gravitational wave strain, 0.4--4e-4 on the equatorial ellipticity of the neutron star, and 0.005--0.14 on the amplitude of r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes. This is the first gravitational wave search to present upper limits on r-modes.

80 citations


Journal ArticleDOI
TL;DR: In this paper, a search for known gravitational-wave signatures in temporal and directional coincidence with 22 short gamma-ray bursts (short GRBs) was carried out using the Wilcoxon-Mann-Whitney U test, finding no evidence for an excess of weak gravitational wave signals in their sample of GRBs.
Abstract: Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [-5, +1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% CL exclusion distance of 6.7 Mpc.

76 citations


Journal ArticleDOI
TL;DR: In this paper, the results of a 515 day search for short bursts of gravitational waves by the IGEC2 observatory were presented, which was the best ever obtained by a bar network: they could detect, with an efficiency >50%, impulsive events with a burst strain amplitude h{sub rss} < or approx.
Abstract: We present here the results of a 515 day search for short bursts of gravitational waves by the IGEC2 observatory. This network included 4 cryogenic resonant-bar detectors: AURIGA, EXPLORER, and NAUTILUS in Europe, and ALLEGRO in America. These results cover the time period from November 6th 2005 until April 15th 2007, partly overlapping the first long term observations by the LIGO interferometric detectors. The observatory operated with high duty cycle, namely, 57% for fourfold coincident observations, and 94% for threefold observations. The sensitivity was the best ever obtained by a bar network: we could detect, with an efficiency >50%, impulsive events with a burst strain amplitude h{sub rss} < or approx. 1x10{sup -19} Hz{sup -1/2}. The network data analysis was based on time coincidence searches over at least three detectors, used a blind search technique, and was tuned to achieve a false alarm rate of 1/century. When the blinding was removed, no gravitational wave candidate was found.

24 citations


J. Abadie, B. P. Abbott1, R. Abbott, Matthew Abernathy  +704 moreInstitutions (3)
01 Jun 2010
TL;DR: In this paper, the authors summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during the fifth science run and the first science run.
Abstract: We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.

24 citations


Posted Content
TL;DR: In this article, the authors summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during the fifth science run and the first science run.
Abstract: We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.

Journal ArticleDOI
01 May 2010
TL;DR: In this article, the detection of continuous gravitational wave (GW) signals is investigated using on a method developed for the detecting of monochromatic signals in the middle of strong noise which makes power spectrum estimates using averaged modified periodograms.
Abstract: The detection of continuous gravitational wave (GW) signals is investigated using on a method developed for the detection of monochromatic signals in the middle of strong noise which makes power spectrum estimates using averaged modified periodograms. With this method it is possible to obtain a power spectrum for the data which preserves peaks due to monochromatic signals. In GW detection two kinds of Doppler shifts are expected, with annual and daily periods. Using the method an analysis is performed on persistent peaks, searching for frequency drifts that might present a pattern similar to the one due to Doppler shifts. For the chosen data set of the ALLEGRO gravitational wave detector it was found that none of the strongest, persistent peaks investigated presented a frequency drift with a Doppler shift pattern, thus excluding them as GW signal candidates.