scispace - formally typeset
W

Weiwei Cai

Researcher at Xiamen University

Publications -  180
Citations -  45311

Weiwei Cai is an academic researcher from Xiamen University. The author has contributed to research in topics: Graphene & Chemistry. The author has an hindex of 40, co-authored 100 publications receiving 40848 citations. Previous affiliations of Weiwei Cai include Chinese Academy of Sciences & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI

Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils

TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Transfer of large-area graphene films for high-performance transparent conductive electrodes

TL;DR: An improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition is reported on, finding that the transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications.
Journal ArticleDOI

Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.

TL;DR: Significant enhancement in mechanical stiffness and fracture strength of graphene oxide paper, a novel paperlike material made from individual graphene oxide sheets, can be achieved upon modification with a small amount of Mg(2+) and Ca(2+).