scispace - formally typeset
W

Winfried Lendeckel

Researcher at Max Planck Society

Publications -  14
Citations -  25458

Winfried Lendeckel is an academic researcher from Max Planck Society. The author has contributed to research in topics: RNA & RNA-induced transcriptional silencing. The author has an hindex of 6, co-authored 14 publications receiving 24656 citations.

Papers
More filters
Journal ArticleDOI

Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells

TL;DR: 21-nucleotide siRNA duplexes provide a new tool for studying gene function in mammalian cells and may eventually be used as gene-specific therapeutics.
Journal ArticleDOI

Identification of novel genes coding for small expressed RNAs.

TL;DR: It is shown that many 21- and 22-nt expressed RNAs, termed microRNAs, exist in invertebrates and vertebrates and that some of these novel RNAs are highly conserved, which suggests that sequence-specific, posttranscriptional regulatory mechanisms mediated by smallRNAs are more general than previously appreciated.
Journal ArticleDOI

RNA interference is mediated by 21- and 22-nucleotide RNAs

TL;DR: In this article, the authors demonstrate that 21 and 22-nt RNA fragments are the sequence-specific mediators of RNA interference in a Drosophila in vitro system, and provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Journal ArticleDOI

Identification of tissue-specific microRNAs from mouse

TL;DR: 34 novel miRNAs were identified by tissue-specific cloning of approximately 21-nucleotide RNAs from mouse and a miRNA was identified that appears to be the fruitfly and mammalian ortholog of C. elegans lin-4 stRNA.
Journal ArticleDOI

Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate.

TL;DR: Duplexes of 21–23 nucleotide RNAs are the sequence‐specific mediators of RNA interference and post‐transcriptional gene silencing and mismatches in the centre of the siRNA duplex prevent target RNA cleavage, providing a rational basis for the design of siRNAs in future gene targeting experiments.