scispace - formally typeset
Search or ask a question

Showing papers in "Genes & Development in 2001"


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that 21 and 22-nt RNA fragments are the sequence-specific mediators of RNA interference in a Drosophila in vitro system, and provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA-protein complex.
Abstract: Double-stranded RNA (dsRNA) induces sequence-specific posttranscriptional gene silencing in many organisms by a process known as RNA interference (RNAi). Using a Drosophila in vitro system, we demonstrate that 21- and 22-nt RNA fragments are the sequence-specific mediators of RNAi. The short interfering RNAs (siRNAs) are generated by an RNase III–like processing reaction from long dsRNA. Chemically synthesized siRNA duplexes with overhanging 3 ends mediate efficient target RNA cleavage in the lysate, and the cleavage site is located near the center of the region spanned by the guiding siRNA. Furthermore, we provide evidence that the direction of dsRNA processing determines whether sense or antisense target RNA can be cleaved by the siRNA–protein complex.

3,980 citations


Journal ArticleDOI
TL;DR: In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment.
Abstract: Since their isolation in the early 1990s, members of the Hedgehog family of intercellular signaling proteins have come to be recognized as key mediators of many fundamental processes in embryonic development. Their activities are central to the growth, patterning, and morphogenesis of many different regions within the body plans of vertebrates and insects, and most likely other invertebrates. In some contexts, Hedgehog signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens regulating cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hedgehog proteins raise many intriguing questions about their mode of operation. How do these proteins move between or across fields of cells? How are their activities modulated and transduced? What are their intracellular targets? In this article we review some well-established paradigms of Hedgehog function inDrosophila and vertebrate development and survey the current understanding of the synthesis, modification, and transduction of Hedgehog proteins. Embryological studies over much of the last century that relied primarily on the physical manipulation of cells within the developing embryo or fragments of the embryo in culture, provided many compelling examples for the primacy of cell–cell interactions in regulating invertebrate and vertebrate development. The subsequent identification of many of the signaling factors that mediate cellular communication has led to two general conclusions. First, although there are many important signals, most of these fall into a few large families of secreted peptide factors: theWnt (Wodarz and Nusse 1998), fibroblast growth factor (Szebenyi and Fallon 1999), TGFsuperfamily (Massague and Chen 2000), plateletderived growth factor (Betsholtz et al. 2001), ephrin (Bruckner and Klein 1998), and Hedgehog families. Second, parallel studies in invertebrate and vertebrate systems have shown that although the final outcome might look quite different (e.g., a fly vs. a mouse), there is a striking conservation in the deployment of members of the same signaling families to regulate development of these seemingly quite different organisms. This review focuses on one of the most intriguing examples of this phenomenon, that of the Hedgehog family. As with many of the advances in our understanding of the genetic regulation of animal development, hedgehog (hh) genes owe their discovery to the pioneering work of Nusslein-Volhard and Wieschaus (1980). In their screen for mutations that disrupt the Drosophila larval body plan, these authors identified several that cause the duplication of denticles (spiky cuticular processes that decorate the anterior half of each body segment) and an accompanying loss of naked cuticle, characteristic of the posterior half of each segment (see Fig. 1). The ensuing appearance of a continuous lawn of denticles projecting from the larval cuticle evidently suggested the spines of a hedgehog to the discoverers, hence the origin of the name of one of these genes. Other loci identified by mutants with this phenotype included armadillo, gooseberry, and wingless (wg). In contrast, animals mutant for the aptly named naked gene showed the converse phenotype, with denticle belts replaced by naked cuticle in every segment. On the basis of these mutant phenotypes, Nusslein-Volhard and Wieschaus (1980) proposed that these so-called segment-polarity genes regulate pattern within each of the segments of the larval body, individual genes acting within distinct subregions of the emerging segmental pattern. The first important breakthrough in unraveling how segment-polarity genes act came in the mid-1980s with the cloning of two members of the class, wingless and engrailed (en). Wg was shown to be the ortholog of the vertebrate proto-oncogene int1 (subsequently renamed Wnt1 and the founder member of the Wnt family of secreted peptide factors; Rijsewijk et al. 1987), whereas the sequence of en revealed that it encodes a homeodomaincontaining transcription factor (Fjose et al. 1985; Poole et al. 1985). Intriguingly, the two genes were found to be expressed in adjacent narrow stripes of cells in each segment (Martinez Arias et al. 1988). A close spatial relationship between Wnt1 and En expression domains was also reported in the primordial midbrain and hindbrain of the vertebrate embryo (McMahon et al. 1992). AnalyWe dedicate this review to the memory of our dear friend and colleague Rosa Beddington, whose encouragement led to our initial collaboration. 3Corresponding authors. E-MAIL p.w.ingham@sheffield.ac.uk; FAX 0114-222-288. E-MAIL amcmahon@biosun.harvard.edu; FAX (617) 496-3763. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ gad.938601.

2,919 citations


Journal Article
TL;DR: The complexity of the apoptotic program began to increase with the discovery of Bcl-2, a gene whose product causes resistance to apoptosis in lymphocytes, and the complex role of mitochondria in apoptosis came into focus when biochemical studies identified several mitochondrial proteins that are able to activate cellular apoptotic programs directly.
Abstract: The initial insight into the genetic basis of apoptosis, or programmed cell death, was gained from ingenious studies of the roundworm Caenorhabditis elegans (for review, see Horvitz 1999). These studies revealed a linear pathway whereby the products of two genes, designated Ced-3 andCed-4, were necessary and sufficient to trigger the perfectly timed and orchestrated death of 131 preordained cells during development. The relevance of this pathway to higher animals was established by the discovery of apparent mammalian orthologs of these genes and the demonstration that the mammalian Ced-3-related genes encode proteases (designated caspases) whose activities are responsible for the morphological changes characteristic of apoptosis (for review, see Hengartner 2000). The complexity of the apoptotic program began to increase with the discovery of Bcl-2, a gene whose product causes resistance to apoptosis in lymphocytes (Vaux et al. 1988; McDonnell et al. 1989). Bcl-2 was shown to correct partially the phenotype of a C. elegans mutation in Ced-9, a cell survival gene that functions upstream of Ced-4 and Ced-3 (Vaux et al. 1992). This finding suggested an apparent one-for-one correlation between the C. elegans and mammalian proand antiapoptotic pathways. However, this correlation did not explain two observations made in mammalian cells. First, the Bcl-2 protein was found on the membrane of mitochondria, which were not implicated in C. elegans apoptosis; and second, apoptotic changes could be produced in Xenopus laevis oocyte extracts only when a membrane fraction enriched in mitochondria was present (Hockenberry et al. 1990; Newmeyer et al. 1994). The complex role of mitochondria in mammalian cell apoptosis came into focus when biochemical studies identified several mitochondrial proteins that are able to activate cellular apoptotic programs directly (Liu et al. 1996; Susin et al. 1999; Du et al. 2000; Verhagen et al. 2000; Li et al. 2001). Normally, these proteins reside in the intermembrane space of mitochondria. In response to a variety of apoptotic stimuli, they are released to the cytosol and/or the nucleus. They promote apoptosis either by activating caspases and nucleases or by neutralizing cytosolic inhibitors of this process. A complex picture has emerged in which mitochondrial and cytosolic proapoptotic proteins interact with antiapoptotic proteins with each cell’s life or death hanging in the balance. This review summarizes the recent data on the expanding and complex role of mitochondria in apoptosis.

2,439 citations


Journal ArticleDOI
TL;DR: These checkpoints contain, as their most proximal signaling elements, sensor proteins that scan chromatin for partially replicated DNA, DNA strand breaks, or other abnormalities, and translate these DNA-derived stimuli into biochemical signals that modulate the functions of specific downstream target proteins.
Abstract: The genomes of eukaryotic cells are under continuous assault by environmental agents (e.g., UV light and reactive chemicals) as well as the byproducts of normal intracellular metabolism (e.g., reactive oxygen intermediates and inaccurately replicated DNA). Whatever the origin, genetic damage threatens cell survival, and, in metazoans, leads to organ failure, immunodeficiency, cancer, and other pathologic sequelae. To ensure that cells pass accurate copies of their genomes on to the next generation, evolution has overlaid the core cell-cycle machinery with a series of surveillance pathways termed cell-cycle checkpoints. The overall function of these checkpoints is to detect damaged or abnormally structured DNA, and to coordinate cell-cycle progression with DNA repair. Typically, cell-cycle checkpoint activation slows or arrests cell-cycle progression, thereby allowing time for appropriate repair mechanisms to correct genetic lesions before they are passed on to the next generation of daughter cells. In certain cell types, such as thymocytes, checkpoint proteins link DNA strand breaks to apoptotic cell death via induction of p53. Hence, loss of either of two biochemically connected checkpoint kinases, ATM or Chk2, paradoxically increases the resistance of immature (CD4CD8) T cells to ionizing radiation (IR)-induced apoptosis (Xu and Baltimore 1996; Hirao et al. 2000). In a broader context, cell-cycle checkpoints can be envisioned as signal transduction pathways that link the pace of key cell-cycle phase transitions to the timely and accurate completion of prior, contingent events. It is important to recognize that checkpoint surveillance functions are not confined solely to the happenings within the nucleus–extranuclear parameters, such as growth factor availability and cell mass accumulation, also govern the pace of the cell cycle (Stocker and Hafen 2000). However, for the purposes of this review we will focus exclusively on the subset of checkpoints that monitor the status and structure of chromosomal DNA during cell-cycle progression (Fig. 1). These checkpoints contain, as their most proximal signaling elements, sensor proteins that scan chromatin for partially replicated DNA, DNA strand breaks, or other abnormalities, and translate these DNA-derived stimuli into biochemical signals that modulate the functions of specific downstream target proteins. Despite the recent explosion of information regarding the molecular components of cell-cycle checkpoints in eukaryotic cells, we still have only a skeletal understanding of both the identities of the DNA damage sensors and the mechanisms through which they initiate and terminate the activation of checkpoints. However, members of the Rad group of checkpoint proteins, which include Rad17, Rad1, Rad9, Rad26, and Hus1 (nomenclature based on the Schizosaccharomyces pombe gene products) are widely expressed in all eukaryotic cells, and are prime suspects in the lineup of candidate DNA damage sensors (Green et al. 2000; O’Connell et al. 2000). Three of these Rad proteins, Rad1, Rad9, and Hus1, exhibit structural similarity to the proliferating cell nuclear antigen (PCNA), and accumulating evidence supports the idea that this similarity may extend to function as well (Thelen et al. 1999; Burtelow et al. 2000). During DNA replication, PCNA forms a homotrimeric complex that encircles DNA, creating a “sliding clamp” that tethers DNA polymerase to the DNA strand. Rad1, Rad9, and Hus1 are also found as a heterotrimeric complex in intact cells, and it has been postulated that the Rad1–Rad9–Hus1 complex encircles DNA at or near sites of damage to form a checkpoint sliding clamp (CSC) (O’Connell et al. 2000), which could serve as a nucleus for the recruitment of the checkpoint signaling machinery to broken or abnormally structured DNA. The analogy between PCNA and the Rad1–Rad9–Hus1 complex extends even further. The loading of the PCNA clamp onto DNA is controlled by the clamp loading complex, replication factor C (RFC). Interestingly, yet another member of the Rad family, Rad17, bears homology to the RFC subunits and, in fact, associates with RFC subunits to form a putative checkpoint clamp loading complex (CLC) that governs the interaction of the Rad1– Rad9–Hus1 CSC with damaged DNA (Green et al. 2000; O’Connell et al. 2000). Although this model is fascinating, rigorous biochemical evaluations of the interplay between the CLC and CSC complexes, and the interactions of both complexes with damaged chromatin, are needed before the model can be accepted without reservation. Present address: The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA E-MAIL abraham@burnham.org; FAX (858) 713-6268. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ gad.914401.

2,053 citations


Journal ArticleDOI
TL;DR: A combination of phenotypic abnormalities and RNA analysis suggests a role for dcr-1 in a regulatory pathway comprised of small temporal RNA (let-7) and its target (e.g., lin-41).
Abstract: Double-stranded RNAs can suppress expression of homologous genes through an evolutionarily conserved process named RNA interference (RNAi) or post-transcriptional gene silencing (PTGS). One mechanism underlying silencing is degradation of target mRNAs by an RNP complex, which contains approximately 22 nt of siRNAs as guides to substrate selection. A bidentate nuclease called Dicer has been implicated as the protein responsible for siRNA production. Here we characterize the Caenorhabditis elegans ortholog of Dicer (K12H4.8; dcr-1) in vivo and in vitro. dcr-1 mutants show a defect in RNAi. Furthermore, a combination of phenotypic abnormalities and RNA analysis suggests a role for dcr-1 in a regulatory pathway comprised of small temporal RNA (let-7) and its target (e.g., lin-41).

1,973 citations


Journal ArticleDOI
TL;DR: It is shown that the use of a recombinant adenovirus expressing Cre recombinase (AdenoCre) to induce K-ras G12D expression in the lungs of mice allows control of the timing and multiplicity of tumor initiation.
Abstract: Adenocarcinoma of the lung is the most common form of lung cancer, but the cell of origin and the stages of progression of this tumor type are not well understood. We have developed a new model of lung adenocarcinoma in mice harboring a conditionally activatable allele of oncogenic K-ras. Here we show that the use of a recombinant adenovirus expressing Cre recombinase (AdenoCre) to induce K-ras G12D expression in the lungs of mice allows control of the timing and multiplicity of tumor initiation. Through the ability to synchronize tumor initiation in these mice, we have been able to characterize the stages of tumor progression. Of particular significance, this system has led to the identification of a new cell type contributing to the development of pulmonary adenocarcinoma.

1,835 citations


Journal ArticleDOI
TL;DR: This work aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the “building blocks” of EMT and its role in cancer progression.
Abstract: Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA; Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA

1,602 citations



Journal ArticleDOI
TL;DR: It is demonstrated that FIH-1 binds to VHL and that VHL also functions as a transcriptional corepressor that inhibits HIF-1alpha transactivation function by recruiting histone deacetylases.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a master regulator of oxygen homeostasis that controls angiogenesis, erythropoiesis, and glycolysis via transcriptional activation of target genes under hypoxic conditions. O(2)-dependent binding of the von Hippel-Lindau (VHL) tumor suppressor protein targets the HIF-1alpha subunit for ubiquitination and proteasomal degradation. The activity of the HIF-1alpha transactivation domains is also O(2) regulated by a previously undefined mechanism. Here, we report the identification of factor inhibiting HIF-1 (FIH-1), a protein that binds to HIF-1alpha and inhibits its transactivation function. In addition, we demonstrate that FIH-1 binds to VHL and that VHL also functions as a transcriptional corepressor that inhibits HIF-1alpha transactivation function by recruiting histone deacetylases. Involvement of VHL in association with FIH-1 provides a unifying mechanism for the modulation of HIF-1alpha protein stabilization and transcriptional activation in response to changes in cellular O(2) concentration.

1,364 citations


Journal ArticleDOI
TL;DR: Although a comprehensive view of the genetic lesions encountered in malignant gliomas has been compiled, substantive conceptual and practical barriers remain in assigning functional significance to these genetic changes and in harnessing this basic information into the development of drugs that make a difference in patient care.
Abstract: Malignant brain tumors strike deep into the psyche of those receiving and those delivering the diagnosis. Malignant gliomas, the most common subtype of primary brain tumors, are aggressive, highly invasive, and neurologically destructive tumors considered to be among the deadliest of human cancers. In its most aggressive manifestation, glioblastoma (GBM), median survival ranges from 9 to 12 months, despite maximum treatment efforts—a statistical fact that has changed little over several decades of technological advances in neurosurgery, radiation therapy, and clinical trials of conventional and novel therapeutics. Over the same time period, there has been an explosion of knowledge in cancer biology and basic science discovery that has fueled meaningful progress in the treatment of many common human cancers, including those of the breast, lung, and prostate. It is perplexing that therapies used effectively in the treatment of these solid tumors are overwhelmingly ineffective in the treatment of GBM, perhaps reflecting the eccentric biology and cellular origin of this neoplasm. To date, only one new agent has been documented to have modest activity against intermediate-grade gliomas, whereas no effective agents have emerged for the treatment of GBM, despite 20 years of enrolling patients in clinical trials. It is ironic that although a comprehensive view of the genetic lesions encountered in malignant gliomas has been compiled, substantive conceptual and practical barriers remain in assigning functional significance to these genetic changes and in harnessing this basic information into the development of drugs that make a difference in patient care. The history of treating malignant gliomas dates back to the middle of the 19th century and parallels landmark advances in modern surgical technique and the clinical discipline of neurology. The first brain tumor surgery of the modern era was performed in 1884 by Rickman

1,205 citations


Journal ArticleDOI
TL;DR: PHR1-binding sequences are present in the promoter of Pi starvation-responsive structural genes, indicating that this protein acts downstream in the Pi starvation signaling pathway.
Abstract: Plants have evolved a number of adaptive responses to cope with growth in conditions of limited phosphate (Pi) supply involving biochemical, metabolic, and developmental changes. We prepared an EMS-mutagenized M(2) population of an Arabidopsis thaliana transgenic line harboring a reporter gene specifically responsive to Pi starvation (AtIPS1::GUS), and screened for mutants altered in Pi starvation regulation. One of the mutants, phr1 (phosphate starvation response 1), displayed reduced response of AtIPS1::GUS to Pi starvation, and also had a broad range of Pi starvation responses impaired, including the responsiveness of various other Pi starvation-induced genes and metabolic responses, such as the increase in anthocyanin accumulation. PHR1 was positionally cloned and shown be related to the PHOSPHORUS STARVATION RESPONSE 1 (PSR1) gene from Chlamydomonas reinhardtii. A GFP::PHR1 protein fusion was localized in the nucleus independently of Pi status, as is the case for PSR1. PHR1 is expressed in Pi sufficient conditions and, in contrast to PSR1, is only weakly responsive to Pi starvation. PHR1, PSR1, and other members of the protein family share a MYB domain and a predicted coiled-coil (CC) domain, defining a subtype within the MYB superfamily, the MYB-CC family. Therefore, PHR1 was found to bind as a dimer to an imperfect palindromic sequence. PHR1-binding sequences are present in the promoter of Pi starvation-responsive structural genes, indicating that this protein acts downstream in the Pi starvation signaling pathway.

Journal ArticleDOI
TL;DR: The molecular mechanisms of IRES-mediated initiation are discussed and how they are used by specific mRNAs to permit translation under physiological circumstances such as mitosis, apoptosis, hypoxia, and some viral infections when translation of most m RNAs is repressed.
Abstract: Initiation of translation of most eukaryotic mRNAs commences with 5 end–dependent recruitment of 40S ribosomal subunits to the mRNA. The 40S subunit carrying the initiator methionine-tRNA and certain eukaryotic initiation factors (eIFs) is thought to scan the mRNA in a 5 to 3 direction until an appropriate start codon is encountered at which stage a 60S subunit joins to form an 80S ribosome that can decode the RNA into protein (Kozak 1989; Hershey and Merrick 2000). A subset of mRNAs contains internal ribosomal entry sites (IRESs), usually in the 5 NTR, that enable end-independent initiation to occur. IRES-containing mRNAs are not subjected to many of the regulatory mechanisms that control recruitment of most mRNAs to the translation apparatus. In this review, we briefly provide an introduction to the known mechanisms of translation initiation. Then, we discuss in detail the molecular mechanisms of IRES-mediated initiation and how they are used by specific mRNAs to permit translation under physiological circumstances such as mitosis, apoptosis, hypoxia, and some viral infections when translation of most mRNAs is repressed.

Journal ArticleDOI
TL;DR: The disruption of the most ubiquitously expressed member of the akt family of genes, akt1, in the mouse is reported, resulting in viable but smaller mice and mice that are more susceptible to apoptosis induced by TNF, anti-Fas, UV irradiation, and serum withdrawal.
Abstract: The serine/threonine kinase Akt has been implicated in the control of cell survival and metabolism. Here we report the disruption of the most ubiquitously expressed member of the akt family of genes, akt1, in the mouse. Akt1−/− mice are viable but smaller when compared to wild-type littermates. In addition, the life span of Akt1−/− mice, upon exposure to genotoxic stress, is shorter. However, Akt1−/− mice do not display a diabetic phenotype. Increased spontaneous apoptosis in testes, and attenuation of spermatogenesis is observed in Akt1−/− male mice. Increased spontaneous apoptosis is also observed in the thymi of Akt1−/− mice, and Akt1−/− thymocytes are more sensitive to apoptosis induced by γ-irradiation and dexamethasone. Finally, Akt1−/− mouse embryo fibroblasts (MEFs) are more susceptible to apoptosis induced by TNF, anti-Fas, UV irradiation, and serum withdrawal.

Journal ArticleDOI
TL;DR: Recent advances in understanding the signaling pathways in mammalian and Drosophila innate immunity are discussed, with emphasis on the mechanisms by which NFB/Rel family proteins are activated.
Abstract: Innate immunity is the first line of defense against infectious microorganisms. The innate immune system relies on germ line-encoded pattern recognition receptors (PRRs) to recognize pathogen-derived substances (Janeway 1989). Activation of the innate immune system through these receptors leads to the expression of a vast array of antimicrobial effector molecules that attack microorganisms at many different levels. The innate immune system appeared early in evolution, and the basic mechanisms of pathogen recognition and activation of the response are conserved throughout much of the animal kingdom (Hoffmann et al. 1999). In contrast to innate immunity, the adaptive immune system generates antigen-specific receptors, antibodies, and T-cell receptors by somatic cell DNA rearrangement. These receptors, found only in higher eukaryotes, recognize specific pathogen-encoded proteins. Mammals have a complex immune response, which relies on communication between the innate and adaptive arms of the immune system. The innate immune response generates a costimulatory signal, which is required in combination with antigen-specific recognition to activate T-cells and the adaptive immune system. Antigen-specific recognition in the absence of costimulation can lead to anergy rather than activation (Janeway 1989). Thus, the activation of an antigen-specific response is coupled to infection through the innate immune system. Insects have a very potent innate immune response that effectively combats a broad spectrum of pathogens. For example, Drosophila can withstand, and clear, bacterial burdens that, relative to their size, would be lethal to mammals (Hoffmann and Reichhart 1997). Induction of innate immunity in both mammals and insects leads to the activation of similar effector mechanisms, such as stimulation of cell-based phagocytic activity and expression of antimicrobial peptides (Hoffmann et al. 1999). For example, Drosophila produce a wide range of potent antimicrobial peptides in response to infection by fungi or bacteria (Hoffmann and Reichhart 1997). Induction of the antimicrobial peptides is regulated at the level of transcription, and they are expressed primarily in the fat body, the insect liver analog. Recent studies have revealed striking similarities in the signaling pathways used by humans and flies to activate their innate immune responses. In both cases, infection leads to the activation of Toll-like receptors (TLRs), which in turn initiate intracellular signaling cascades that culminate in the activation of NFB/Rel family transcription factors. In this review, we discuss recent advances in understanding the signaling pathways in mammalian and Drosophila innate immunity, with emphasis on the mechanisms by which NFB/Rel family proteins are activated.

Journal ArticleDOI
TL;DR: It is proposed that Akt increases coupling of glucose metabolism to oxidative phosphorylation and regulates PT pore opening via the promotion of hexokinase-VDAC interaction at the outer mitochondrial membrane.
Abstract: The serine/threonine kinase Akt/PKB is a major downstream effector of growth factor–mediated cell survival. Activated Akt, like Bcl-2 and Bcl-xL, prevents closure of a PT pore component, the voltage-dependent anion channel (VDAC); intracellular acidification; mitochondrial hyperpolarization; and the decline in oxidative phosphorylation that precedes cytochrome c release. However, unlike Bcl-2 and Bcl-xL, the ability of activated Akt to preserve mitochondrial integrity, and thereby inhibit apoptosis, requires glucose availability and is coupled to its metabolism. Hexokinases are known to bind to VDAC and directly couple intramitochondrial ATP synthesis to glucose metabolism. We provide evidence that such coupling serves as a downstream effector function for Akt. First, Akt increases mitochondria-associated hexokinase activity. Second, the antiapoptotic activity of Akt requires only the first committed step of glucose metabolism catalyzed by hexokinase. Finally, ectopic hexokinase expression mimics the ability of Akt to inhibit cytochrome c release and apoptosis. We therefore propose that Akt increases coupling of glucose metabolism to oxidative phosphorylation and regulates PT pore opening via the promotion of hexokinase-VDAC interaction at the outer mitochondrial membrane.

Journal ArticleDOI
TL;DR: It is shown that introduction of three genes encoding the SV40 large-T antigen, the telomerase catalytic subunit, and an H-Ras oncoprotein into primary HMECs results in cells that form tumors when transplanted subcutaneously or into the mammary glands of immunocompromised mice.
Abstract: A number of genetic mutations have been identified in human breast cancers, yet the specific combinations of mutations required in concert to form breast carcinoma cells remain unknown. One approach to identifying the genetic and biochemical alterations required for this process involves the transformation of primary human mammary epithelial cells (HMECs) to carcinoma cells through the introduction of specific genes. Here we show that introduction of three genes encoding the SV40 large-T antigen, the telomerase catalytic subunit, and an H-Ras oncoprotein into primary HMECs results in cells that form tumors when transplanted subcutaneously or into the mammary glands of immunocompromised mice. The tumorigenicity of these transformed cells was dependent on the level of ras oncogene expression. Interestingly, transformation of HMECs but not two other human cell types was associated with amplifications of the c-myc oncogene, which occurred during the in vitro growth of the cells. Tumors derived from the transformed HMECs were poorly differentiated carcinomas that infiltrated through adjacent tissue. When these cells were injected subcutaneously, tumors formed in only half of the injections and with an average latency of 7.5 weeks. Mixing the epithelial tumor cells with Matrigel or primary human mammary fibroblasts substantially increased the efficiency of tumor formation and decreased the latency of tumor formation, demonstrating a significant influence of the stromal microenvironment on tumorigenicity. Thus, these observations establish an experimental system for elucidating both the genetic and cell biological requirements for the development of breast cancer.

Journal ArticleDOI
TL;DR: It is shown that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells in mice that carry a spontaneous or a targeted mutation of Sox10, and that it controls expression of ErbB3 in neural crest cells.
Abstract: The molecular mechanisms that determine glial cell fate in the vertebrate nervous system have not been elucidated. Peripheral glial cells differentiate from pluripotent neural crest cells. We show here that the transcription factor Sox10 is a key regulator in differentiation of peripheral glial cells. In mice that carry a spontaneous or a targeted mutation of Sox10, neuronal cells form in dorsal root ganglia, but Schwann cells or satellite cells are not generated. At later developmental stages, this lack of peripheral glial cells results in a severe degeneration of sensory and motor neurons. Moreover, we show that Sox10 controls expression of ErbB3 in neural crest cells. ErbB3 encodes a Neuregulin receptor, and down-regulation of ErbB3 accounts for many changes in development of neural crest cells observed in Sox10 mutant mice. Sox10 also has functions not mediated by ErbB3, for instance in the melanocyte lineage. Phenotypes observed in heterozygous mice that carry a targeted Sox10 null allele reproduce those observed in heterozygous Sox10(Dom) mice. Haploinsufficiency of Sox10 can thus cause pigmentation and megacolon defects, which are also observed in Sox10(Dom)/+ mice and in patients with Waardenburg-Hirschsprung disease caused by heterozygous SOX10 mutations.

Journal ArticleDOI
TL;DR: The results suggest that neither activation of BH3-only proteins nor suppression of pro-survival Bcl-2 proteins is sufficient to kill cells in the absence of both Bax and Bak.
Abstract: The BH3-only proteins Bim and Bad bind to the antiapoptotic Bcl-2 proteins and induce apoptosis in wild-type cells and cells from either bax−/− or bak−/− animals. In contrast, constitutively active forms of Bim and Bad failed to induce apoptosis in bax−/−bak−/− cells. Expression of Bax restored susceptibility of the cells to Bim and Bad. In addition, Bax but not Bim or Bad sensitized the bax−/−bak−/− cells to a wide variety of cell death stimuli including UV irradiation, chemotherapeutic agents, and ER stress. These results suggest that neither activation of BH3-only proteins nor suppression of pro-survival Bcl-2 proteins is sufficient to kill cells in the absence of both Bax and Bak. Furthermore, whereas mouse embryo fibroblasts (MEF) expressing only Bax or Bak displayed resistance to transformation, bax−/−bak−/− MEF were nearly as prone to oncogenic transformation as p53−/− MEF. Thus, the function of either Bax or Bak appears required to initiate most forms of apoptosis and to suppress oncogenic transformation.

Journal ArticleDOI
TL;DR: It is shown thatosphorylation of Ser 65 and Thr 70 alone is insufficient to block binding to eIF4E, indicating that a combination of phosphorylation events is necessary to dissociate 4E-BP1 from eIF3E, and a novel combination of two-dimensional isoelectric focusing and Western blotting with phosphospecific antibodies is established.
Abstract: In most instances, translation is regulated at the initiation phase, when a ribosome is recruited to the 5′ end of an mRNA. The eIF4E-binding proteins (4E-BPs) interdict translation initiation by binding to the translation factor eIF4E, and preventing recruitment of the translation machinery to mRNA. The 4E-BPs inhibit translation in a reversible manner. Hypophosphorylated 4E-BPs interact avidly with eIF4E, whereas 4E-BP hyperphosphorylation, elicited by stimulation of cells with hormones, cytokines, or growth factors, results in an abrogation of eIF4E-binding activity. We reported previously that phosphorylation of 4E-BP1 on Thr 37 and Thr 46 is relatively insensitive to serum deprivation and rapamycin treatment, and that phosphorylation of these residues is required for the subsequent phosphorylation of a set of unidentified serum-responsive sites. Here, using mass spectrometry, we identify the serum-responsive, rapamycin-sensitive sites as Ser 65 and Thr 70. Utilizing a novel combination of two-dimensional isoelectric focusing/SDS-PAGE and Western blotting with phosphospecific antibodies, we also establish the order of 4E-BP1 phosphorylation in vivo; phosphorylation of Thr 37/Thr 46 is followed by Thr 70 phosphorylation, and Ser 65 is phosphorylated last. Finally, we show that phosphorylation of Ser 65 and Thr 70 alone is insufficient to block binding to eIF4E, indicating that a combination of phosphorylation events is necessary to dissociate 4E-BP1 from eIF4E.

Journal ArticleDOI
TL;DR: Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development, as well as expanding the possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi.
Abstract: In the few years since the discovery of RNA interference (RNAi; Fire et al. 1998), it has become clear that this process is ancient. RNAi, the oldest and most ubiquitous antiviral system, appeared before the divergence of plants and animals. Because aspects of RNAi, known as cosuppression, also control the expression of transposable elements and repetitive sequences (Ketting et al. 1999; Tabara et al. 1999), the interplay of RNAi and transposon activities have almost certainly shaped the structure of the genome of most organisms. Surprisingly, we are only now beginning to explore the molecular processes responsible for RNAi and to appreciate the breadth of its function in biology. Practical applications of this knowledge have allowed rapid surveys of gene functions (see Fraser et al. 2000 and Gönczey et al. 2000 for RNAi analysis of genes on chromosome I and III of Caenorhabditis elegans) and will possibly result in new therapeutic interventions. Genetic studies have expanded the biology of RNAi to cosuppression, transposon silencing, and the first hints of relationships to regulation of translation and development. The possible roles of RNA-dependent RNA polymerase (RdRp) in RNAi have been expanded. Many experiments indicate that dsRNA directs gene-specific methylation of DNA and, thus, regulation at the stage of transcription in plants. Cosuppression may involve regulation by polycomb complexes at the level of transcription in C. elegans and Drosophila. This article will review these topics and primarily summarize advances in the study of RNAi over the past year.

Journal ArticleDOI
TL;DR: This work shows the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery, and finds that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms.
Abstract: Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.

Journal ArticleDOI
TL;DR: In this paper, a consensus 2A10 recognition sequence, possessing the core motif DYS, was identified twice within the human Mdm2 molecule, at positions corresponding to residues 258−260 and 393−395.
Abstract: The p53 tumor suppressor protein, a key regulator of cellular responses to genotoxic stress, is stabilized and activated after DNA damage. The rapid activation of p53 by ionizing radiation and radiomimetic agents is largely dependent on the ATM kinase. p53 is phosphorylated by ATM shortly after DNA damage, resulting in enhanced stability and activity of p53. The Mdm2 oncoprotein is a pivotal negative regulator of p53. In response to ionizing radiation and radiomimetic drugs, Mdm2 undergoes rapid ATM-dependent phosphorylation prior to p53 accumulation. This results in a decrease in its reactivity with the 2A10 monoclonal antibody. Phage display analysis identified a consensus 2A10 recognition sequence, possessing the core motif DYS. Unexpectedly, this motif appears twice within the human Mdm2 molecule, at positions corresponding to residues 258–260 and 393–395. Both putative 2A10 epitopes are highly conserved and encompass potential phosphorylation sites. Serine 395, residing within the carboxy-terminal 2A10 epitope, is the major target on Mdm2 for phosphorylation by ATM in vitro. Mutational analysis supports the conclusion that Mdm2 undergoes ATM-dependent phosphorylation on serine 395 in vivo in response to DNA damage. The data further suggests that phosphorylated Mdm2 may be less capable of promoting the nucleo-cytoplasmic shuttling of p53 and its subsequent degradation, thereby enabling p53 accumulation. Our findings imply that activation of p53 by DNA damage is achieved, in part, through attenuation of the p53-inhibitory potential of Mdm2.

Journal ArticleDOI
TL;DR: It is shown that the E2Fs control the expression of several genes that are involved in cell proliferation and apoptosis, differentiation, and development and provide possible genetic explanations to the variety of phenotypes observed as a consequence of a deregulated pRB/E2F pathway.
Abstract: The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation of E2F1, E2F2, and E2F3. We show that the E2Fs control the expression of several genes that are involved in cell proliferation. We also show that the E2Fs regulate a number of genes involved in apoptosis, differentiation, and development. These results provide possible genetic explanations to the variety of phenotypes observed as a consequence of a deregulated pRB/E2F pathway.

Journal ArticleDOI
TL;DR: The high conservation of small RNAs among closely related bacterial species, as well as analysis of transcripts detected by high-density oligonucleotide probe arrays, are used to predict the presence of novel small RNA genes in the intergenic regions of the Escherichia coli genome.
Abstract: A burgeoning list of small RNAs with a variety of regulatory functions has been identified in both prokaryotic and eukaryotic cells. However, it remains difficult to identify small RNAs by sequence inspection. We used the high conservation of small RNAs among closely related bacterial species, as well as analysis of transcripts detected by high-density oligonucleotide probe arrays, to predict the presence of novel small RNA genes in the intergenic regions of the Escherichia coli genome. The existence of 23 distinct new RNA species was confirmed by Northern analysis. Of these, six are predicted to encode short ORFs, whereas 17 are likely to be novel functional small RNAs. We discovered that many of these small RNAs interact with the RNA-binding protein Hfq, pointing to a global role of the Hfq protein in facilitating small RNA function. The approaches used here should allow identification of small RNAs in other organisms.

Journal ArticleDOI
TL;DR: It is suggested that chronic autocrine PDGF signaling can promote a proliferating population of glial precursors and is potentially sufficient to induce gliomagenesis.
Abstract: We present evidence that some low-grade oligodendrogliomas may be comprised of proliferating glial progenitor cells that are blocked in their ability to differentiate, whereas malignant gliomas have additionally acquired other mutations such as disruption of cell cycle arrest pathways by loss of Ink4a–Arf. We have modeled these effects in cell culture and in mice by generating autocrine stimulation of glia through the platelet-derived growth factor receptor (PDGFR). In cell culture, PDGF signaling induces proliferation of glial precursors and blocks their differentiation into oligodendrocytes and astrocytes. In addition, coexpression of PDGF and PDGF receptors has been demonstrated in human gliomas, implying that autocrine stimulation may be involved in glioma formation. In this study, using somatic cell type-specific gene transfer we investigated the functions of PDGF autocrine signaling in gliomagenesis by transferring the overexpression of PDGF-B into either nestin-expressing neural progenitors or glial fibrillary acidic protein (GFAP)-expressing astrocytes both in cell culture and in vivo. In cultured astrocytes, overexpression of PDGF-B caused significant increase in proliferation rate of both astrocytes and neural progenitors. Furthermore, PDGF gene transfer converted cultured astrocytes into cells with morphologic and gene expression characteristics of glial precursors. In vivo, gene transfer of PDGF to neural progenitors induced the formation of oligodendrogliomas in about 60% of mice by 12 wk of age; PDGF transfer to astrocytes induced the formation of either oligodendrogliomas or mixed oligoastrocytomas in about 40% of mice in the same time period. Loss of Ink4a–Arf, a mutation frequently found in high-grade human gliomas, resulted in shortened latency and enhanced malignancy of gliomas. The highest percentage of PDGF-induced malignant gliomas arose from of Ink4a–Arf null progenitor cells. These data suggest that chronic autocrine PDGF signaling can promote a proliferating population of glial precursors and is potentially sufficient to induce gliomagenesis. Loss of Ink4a–Arf is not required for PDGF-induced glioma formation but promotes tumor progression toward a more malignant phenotype.

Journal ArticleDOI
TL;DR: It is proposed that YAP65 regulates TEAD-dependent transcription in response to mitogenic signals, and YAP 65 also binds Src/Yes protein tyrosine kinases, and the carboxy-terminal acidic activation domain in YAP is the transcriptional activation domain for TEAD transcription factors.
Abstract: Mammals express four highly conserved TEAD/TEF transcription factors that bind the same DNA sequence, but serve different functions during development. TEAD-2/TEF-4 protein purified from mouse cells was associated predominantly with a novel TEAD-binding domain at the amino terminus of YAP65, a powerful transcriptional coactivator. YAP65 interacted specifically with the carboxyl terminus of all four TEAD proteins. Both this interaction and sequence-specific DNA binding by TEAD were required for transcriptional activation in mouse cells. Expression of YAP in lymphocytic cells that normally do not support TEAD-dependent transcription (e.g., MPC11) resulted in up to 300-fold induction of TEAD activity. Conversely, TEAD overexpression squelched YAP activity. Therefore, the carboxy-terminal acidic activation domain in YAP is the transcriptional activation domain for TEAD transcription factors. However, whereas TEAD was concentrated in the nucleus, excess YAP65 accumulated in the cytoplasm as a complex with the cytoplasmic localization protein, 14-3-3. Because TEAD-dependent transcription was limited by YAP65, and YAP65 also binds Src/Yes protein tyrosine kinases, we propose that YAP65 regulates TEAD-dependent transcription in response to mitogenic signals.

Journal ArticleDOI
TL;DR: Structural predictions and likely C-peptide cleavage sites typical of mammalian insulins suggest thatins-1 is most closely related to insulin, and overexpression of ins-1 causes partially penetrant arrest at the dauer stage and enhances dauer arrest in weak daf-2 mutants, suggesting that INS-1 and human insulin antagonize DAF-2 insulin-like signaling.
Abstract: The activity of the DAF-2 insulin-like receptor is required for Caenorhabditis elegans reproductive growth and normal adult life span. Informatic analysis identified 37 C. elegans genes predicted to encode insulin-like peptides. Many of these genes are divergent insulin superfamily members, and many are clustered, indicating recent diversification of the family. The ins genes are primarily expressed in neurons, including sensory neurons, a subset of which are required for reproductive development. Structural predictions and likely C-peptide cleavage sites typical of mammalian insulins suggest that ins-1 is most closely related to insulin. Overexpression of ins-1, or expression of human insulin under the control of ins-1 regulatory sequences, causes partially penetrant arrest at the dauer stage and enhances dauer arrest in weak daf-2 mutants, suggesting that INS-1 and human insulin antagonize DAF-2 insulin-like signaling. A deletion of the ins-1 coding region does not enhance or suppress dauer arrest, indicating a functional redundancy among the 37 ins genes. Of five other ins genes tested, the only other one bearing a predicted C peptide also antagonizes daf-2 signaling, whereas four ins genes without a C peptide do not, indicating functional diversity within the ins family.

Journal ArticleDOI
TL;DR: Chromatin immunoprecipitation assays show that H3 Lys4 methylation is present at the rDNA locus and that Set1-mediated H3 lysine 4 (Lys4)methylation is required for repression of RNA polymerase II transcription within rDNA, and suggest that Set 1-mediatedH3 Lys 4 methylation are required for normal cell growth and transcriptional silencing.
Abstract: Histone methylation is known to be associated with both transcriptionally active and repressive chromatin states. Recent studies have identified SET domain–containing proteins such as SUV39H1 and Clr4 as mediators of H3 lysine 9 (Lys9) methylation and heterochromatin formation. Interestingly, H3 Lys9 methylation is not observed from bulk histones isolated from asynchronous populations of Saccharomyces cerevisiae or Tetrahymena thermophila. In contrast, H3 lysine 4 (Lys4) methylation is a predominant modification in these smaller eukaryotes. To identify the responsible methyltransferase(s) and to gain insight into the function of H3 Lys4 methylation, we have developed a histone H3 Lys4 methyl-specific antiserum. With this antiserum, we show that deletion of SET1, but not of other putative SET domain–containing genes, in S. cerevisiae, results in the complete abolishment of H3 Lys4 methylation in vivo. Furthermore, loss of H3 Lys4 methylation in a set1Δ strain can be rescued by SET1. Analysis of histone H3 mutations at Lys4 revealed a slow-growth defect similar to a set1Δ strain. Chromatin immunoprecipitation assays show that H3 Lys4 methylation is present at the rDNA locus and that Set1-mediated H3 Lys4 methylation is required for repression of RNA polymerase II transcription within rDNA. Taken together, these data suggest that Set1-mediated H3 Lys4 methylation is required for normal cell growth and transcriptional silencing.

Journal ArticleDOI
TL;DR: In this paper, an asymmetric localization of the auxin permease in root protophloem cells is proposed to promote the acropetal, post-phloem movement of auxin to the root apex.
Abstract: Auxins represent an important class of plant hormone that regulate plant development. Plants use specialized carrier proteins to transport the auxin indole-3-acetic acid (IAA) to target tissues. To date, efflux carrier-mediated polar auxin transport has been assumed to represent the sole mode of long distance IAA movement. Localization of the auxin permease AUX1 in the Arabidopsis root apex has revealed a novel phloem-based IAA transport pathway. AUX1, asymmetrically localized to the plasma membrane of root protophloem cells, is proposed to promote the acropetal, post-phloem movement of auxin to the root apex. MS analysis shows that IAA accumulation in aux1 mutant root apices is impaired, consistent with an AUX1 phloem unloading function. AUX1 localization to columella and lateral root cap tissues of the Arabidopsis root apex reveals that the auxin permease regulates a second IAA transport pathway. Expression studies using an auxin-regulated reporter suggest that AUX1 is necessary for root gravitropism by facilitating basipetal auxin transport to distal elongation zone tissues.

Journal ArticleDOI
TL;DR: The endodermal domain for the liver is specified by simultaneous signaling from distinct mesodermal sources by finding that BMP signaling from the septum transversum mesenchyme is necessary to induce liver genes in the endoderm and to exclude a pancreatic fate.
Abstract: Mesodermal signaling is critical for patterning the embryonic endoderm into different tissue domains. Classical tissue transplant experiments in the chick and recent studies in the mouse indicated that interactions with the cardiogenic mesoderm are necessary and sufficient to induce the liver in the ventral foregut endoderm. Using molecular markers and functional assays, we now show that septum transversum mesenchyme cells, a distinct mesoderm cell type, are closely apposed to the ventral endoderm and contribute to hepatic induction. Specifically, using a mouse Bmp4 null mutation and an inhibitor of BMPs, we find that BMP signaling from the septum transversum mesenchyme is necessary to induce liver genes in the endoderm and to exclude a pancreatic fate. BMPs apparently function, in part, by affecting the levels of the GATA4 transcription factor, and work in parallel to FGF signaling from the cardiac mesoderm. BMP signaling also appears critical for morphogenetic growth of the hepatic endoderm into a liver bud. Thus, the endodermal domain for the liver is specified by simultaneous signaling from distinct mesodermal sources.