scispace - formally typeset
Search or ask a question

Showing papers by "Zoran Mikic published in 2012"


Journal ArticleDOI
TL;DR: In this article, a sequence of apparently coupled eruptions was observed on 2010 August 1-2 by Solar Dynamics Observatory and STEREO and the resulting field structure was investigated by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections.
Abstract: A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by Solar Dynamics Observatory and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the magnetic null points and separators associated with the pseudo-streamers. We propose that magnetic reconnection triggered along these separators by the first eruption likely played a key role in establishing the assumed link between the sequential eruptions. The present work substantiates our recent simplified magnetohydrodynamic model of sympathetic eruptions and provides a guide for further deeper study of these phenomena. Several important implications of our results for the S-web model of the slow solar wind are also addressed.

88 citations


Journal ArticleDOI
TL;DR: In this article, a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one was performed.
Abstract: Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

85 citations


Journal ArticleDOI
TL;DR: In this paper, a new theory in which the slow solar wind originates from the continuous opening and closing of narrow open field corridors, the S-Web model, is described.
Abstract: Determining the source at the Sun of the slow solar wind is one of the major unsolved problems in solar and heliospheric physics. First, we review the existing theories for the slow wind and argue that they have difficulty accounting for both the observed composition of the wind and its large angular extent. A new theory in which the slow wind originates from the continuous opening and closing of narrow open field corridors, the S-Web model, is described. Support for the S-Web model is derived from MHD solutions for the quasisteady corona and wind during the time of the August 1, 2008 eclipse. Additionally, we perform fully dynamic numerical simulations of the corona and heliosphere in order to test the S-Web model as well as the interchange model proposed by Fisk and co-workers. We discuss the implications of our simulations for the competing theories and for understanding the corona - heliosphere connection, in general.

57 citations


Journal ArticleDOI
TL;DR: In this article, a detailed study of electric current patterns in two solar active regions was performed using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio.
Abstract: Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio we perform a detailed study of electric current patterns in two solar active regions: a flaring/eruptive, and a flare-quiet one. We aim to determine whether active regions inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within active regions are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most active regions appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated active regions remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in active regions. This coherence effect is more pronounced in more compact active regions with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar active regions.

11 citations


Journal ArticleDOI
TL;DR: In this paper, a sequence of apparently coupled eruptions was observed on 2010 August 1-2 by SDO and STEREO and the resulting field structure was investigated by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections.
Abstract: A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by SDO and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the magnetic null points and separators associated with the pseudo-streamers. We propose that magnetic reconnection triggered along these separators by the first eruption likely played a key role in establishing the assumed link between the sequential eruptions. The present work substantiates our recent simplified magnetohydrodynamic model of sympathetic eruptions and provides a guide for further deeper study of these phenomena. Several important implications of our results for the S-web model of the slow solar wind are also addressed.

7 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the SWAP space-borne imager for the systematic survey of coronal activity in the EUV lines near 17.4 nm, over a field of view (FOV) up to 2 R 0.
Abstract: The existence of coronal plasmoids has been postulated for many years in order to supply material to streamers and possibly to the solar wind (SW). The W-L SoHO C2 Lasco coronagraph observations were made under the 2.2 solar radii (R0) occulting disk to look at the ultimate sources of the SW; EUV imagers are preferably devoted to the analysis of the corona on and very near the solar disk. Here, in addition to eclipse white-light (W-L) snapshots, we used the new SWAP space-borne imager designed for the systematic survey of coronal activity in the EUV lines near 17.4 nm, over a field of view (FOV) up to 2 R0. Using summed and co-aligned images, the corona can then be evaluated for the 1st time up to the limit of this FOV. At the time of the July 11, 2010, solar total eclipse a 20h continuous run of observations was collected, including images taken during eclipse totality from several ground observing locations where W-L data were collected. A plasmoid-like off-limb event was followed using the SWAP summed

4 citations


Proceedings ArticleDOI
21 May 2012
TL;DR: The recent solar minimum, marking the end of solar cycle 23, has been unique in a number of ways, such as polar photospheric flux was substantially weaker, coronal holes were notably smaller, and unipolar streamers were considerably more prevalent than previous minima as mentioned in this paper.
Abstract: The recent solar minimum, marking the end of solar cycle 23, has been unique in a number of ways. In particular, the polar photospheric flux was substantially weaker, coronal holes were notably smaller, and unipolar streamers were considerably more prevalent than previous minima. To understand the origins of some of these phenomena, we have computed global solutions using a three-dimensional, time-dependent MHD model of the solar corona and heliosphere. In this report, we present a brief overview of a selection of model results, illustrating: (1) how observations are being used to better constrain model properties; and (2) how the model results can be applied to understanding complex coronal and interplanetary phenomena, and, specifically, unipolar streamers.

3 citations