scispace - formally typeset
Search or ask a question
Conference

Conference on Learning Theory 

About: Conference on Learning Theory is an academic conference. The conference publishes majorly in the area(s): Regret & Upper and lower bounds. Over the lifetime, 1870 publications have been published by the conference receiving 138426 citations.


Papers
More filters
Journal ArticleDOI
01 Aug 1997
TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Abstract: In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.

15,813 citations

Proceedings ArticleDOI
01 Jul 1992
TL;DR: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented, applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions.
Abstract: A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC-dimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.

11,211 citations

Proceedings Article
01 Jan 2010
TL;DR: Adaptive subgradient methods as discussed by the authors dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning, which allows us to find needles in haystacks in the form of very predictive but rarely seen features.
Abstract: We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent advances in stochastic optimization and online learning which employ proximal functions to control the gradient steps of the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal function, which significantly simplifies setting a learning rate and results in regret guarantees that are provably as good as the best proximal function that can be chosen in hindsight. We give several efficient algorithms for empirical risk minimization problems with common and important regularization functions and domain constraints. We experimentally study our theoretical analysis and show that adaptive subgradient methods outperform state-of-the-art, yet non-adaptive, subgradient algorithms.

7,244 citations

Proceedings ArticleDOI
24 Jul 1998
TL;DR: A PAC-style analysis is provided for a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views, to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples.
Abstract: We consider the problem of using a large unlabeled sample to boost performance of a learning algorit,hrn when only a small set of labeled examples is available. In particular, we consider a problem setting motivated by the task of learning to classify web pages, in which the description of each example can be partitioned into two distinct views. For example, the description of a web page can be partitioned into the words occurring on that page, and the words occurring in hyperlinks t,hat point to that page. We assume that either view of the example would be sufficient for learning if we had enough labeled data, but our goal is to use both views together to allow inexpensive unlabeled data to augment, a much smaller set of labeled examples. Specifically, the presence of two distinct views of each example suggests strategies in which two learning algorithms are trained separately on each view, and then each algorithm’s predictions on new unlabeled examples are used to enlarge the training set of the other. Our goal in this paper is to provide a PAC-style analysis for this setting, and, more broadly, a PAC-style framework for the general problem of learning from both labeled and unlabeled data. We also provide empirical results on real web-page data indicating that this use of unlabeled examples can lead to significant improvement of hypotheses in practice. *This research was supported in part by the DARPA HPKB program under contract F30602-97-1-0215 and by NSF National Young investigator grant CCR-9357793. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. TO copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. COLT 98 Madison WI USA Copyright ACM 1998 l-58113-057--0/98/ 7...%5.00 92 Tom Mitchell School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3891 mitchell+@cs.cmu.edu

5,840 citations

Proceedings ArticleDOI
05 Jul 1995
TL;DR: C Culling is near optimal for this problem, highly noise tolerant, and the best known a~~roach in some regimes, and some new large deviation bounds on this submartingale enable us to determine the running time of the algorithm.
Abstract: We analyze the performance of a Genetic Type Algorithm we call Culling and a variety of other algorithms on a problem we refer to as ASP. Culling is near optimal for this problem, highly noise tolerant, and the best known a~~roach . . in some regimes. We show that the problem of learning the Ising perception is reducible to noisy ASP. These results provide an example of a rigorous analysis of GA’s and give insight into when and how C,A’s can beat competing methods. To analyze the genetic algorithm, we view it as a special type of submartingale. We prove some new large deviation bounds on this submartingale w~ich enable us to determine the running time of the algorithm.

4,520 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
202176
2020116
2019122
201890
201777
201678