scispace - formally typeset
Search or ask a question
Conference

International Conference on Management of Data 

About: International Conference on Management of Data is an academic conference. The conference publishes majorly in the area(s): Query optimization & SQL. Over the lifetime, 6730 publications have been published by the conference receiving 552985 citations.


Papers
More filters
Proceedings ArticleDOI
01 Jun 1993
TL;DR: An efficient algorithm is presented that generates all significant association rules between items in the database of customer transactions and incorporates buffer management and novel estimation and pruning techniques.
Abstract: We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

15,645 citations

Proceedings ArticleDOI
01 Jun 1984
TL;DR: A dynamic index structure called an R-tree is described which meets this need, and algorithms for searching and updating it are given and it is concluded that it is useful for current database systems in spatial applications.
Abstract: In order to handle spatial data efficiently, as required in computer aided design and geo-data applications, a database system needs an index mechanism that will help it retrieve data items quickly according to their spatial locations However, traditional indexing methods are not well suited to data objects of non-zero size located m multi-dimensional spaces In this paper we describe a dynamic index structure called an R-tree which meets this need, and give algorithms for searching and updating it. We present the results of a series of tests which indicate that the structure performs well, and conclude that it is useful for current database systems in spatial applications

7,336 citations

Journal ArticleDOI
16 May 2000
TL;DR: This study proposes a novel frequent pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develops an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Abstract: Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns.In this study, we propose a novel frequent pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth. Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a highly condensed, much smaller data structure, which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts a pattern fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new frequent pattern mining methods.

6,118 citations

Journal ArticleDOI
01 Mar 2002
TL;DR: This presentation discusses the design and implementation of machine learning algorithms in Java, as well as some of the techniques used to develop and implement these algorithms.
Abstract: 1. What's It All About? 2. Input: Concepts, Instances, Attributes 3. Output: Knowledge Representation 4. Algorithms: The Basic Methods 5. Credibility: Evaluating What's Been Learned 6. Implementations: Real Machine Learning Schemes 7. Moving On: Engineering The Input And Output 8. Nuts And Bolts: Machine Learning Algorithms In Java 9. Looking Forward

5,936 citations

Journal ArticleDOI
16 May 2000
TL;DR: This paper contends that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier, called the local outlier factor (LOF), and gives a detailed formal analysis showing that LOF enjoys many desirable properties.
Abstract: For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal analysis showing that LOF enjoys many desirable properties. Using real-world datasets, we demonstrate that LOF can be used to find outliers which appear to be meaningful, but can otherwise not be identified with existing approaches. Finally, a careful performance evaluation of our algorithm confirms we show that our approach of finding local outliers can be practical.

5,248 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
2021317
2020308
2019264
2018272
2017287
2016318