scispace - formally typeset
Search or ask a question
Conference

International Workshop on Security 

About: International Workshop on Security is an academic conference. The conference publishes majorly in the area(s): Encryption & Authentication. Over the lifetime, 2031 publications have been published by the conference receiving 35791 citations.


Papers
More filters
Book ChapterDOI
19 Apr 1999
TL;DR: A resurrecting duckling security policy model is presented, which describes secure transient association of a device with multiple serialised owners over the air in a short range wireless channel.
Abstract: In the near future, many personal electronic devices will be able to communicate with each other over a short range wireless channel. We investigate the principal security issues for such an environment. Our discussion is based on the concrete example of a thermometer that makes its readings available to other nodes over the air. Some lessons learned from this example appear to be quite general to ad-hoc networks, and rather different from what we have come to expect in more conventional systems: denial of service, the goals of authentication, and the problems of naming all need re-examination. We present the resurrecting duckling security policy model, which describes secure transient association of a device with multiple serialised owners.

1,355 citations

Proceedings ArticleDOI
22 Sep 2008
TL;DR: In this article, a provably secure storage outsourced data possession (PDP) technique based on symmetric key cryptography was proposed, which allows outsourcing of dynamic data, such as block modification, deletion and append.
Abstract: Storage outsourcing is a rising trend which prompts a number of interesting security issues, many of which have been extensively investigated in the past. However, Provable Data Possession (PDP) is a topic that has only recently appeared in the research literature. The main issue is how to frequently, efficiently and securely verify that a storage server is faithfully storing its client's (potentially very large) outsourced data. The storage server is assumed to be untrusted in terms of both security and reliability. (In other words, it might maliciously or accidentally erase hosted data; it might also relegate it to slow or off-line storage.) The problem is exacerbated by the client being a small computing device with limited resources. Prior work has addressed this problem using either public key cryptography or requiring the client to outsource its data in encrypted form.In this paper, we construct a highly efficient and provably secure PDP technique based entirely on symmetric key cryptography, while not requiring any bulk encryption. Also, in contrast with its predecessors, our PDP technique allows outsourcing of dynamic data, i.e, it efficiently supports operations, such as block modification, deletion and append.

1,146 citations

Book ChapterDOI
07 Apr 1997
TL;DR: A number of attacks that can be mounted by opponents with much shallower pockets, such as smart-cards, are described.
Abstract: There has been considerable recent interest in the level of tamper resistance that can be provided by low cost devices such as smart-cards. It is known that such devices can be reverse engineered using chip testing equipment, but a state of the art semiconductor laboratory costs millions of dollars. In this paper, we describe a number of attacks that can be mounted by opponents with much shallower pockets.

708 citations

Book ChapterDOI
11 Sep 2002
TL;DR: The anonymous credential system of Camenisch and Lysyanskaya as discussed by the authors is a generalization of the anonymous credential scheme of the original anonymous signature scheme and is a building block for anonymity-enhancing cryptographic systems, such as electronic cash, group signatures and anonymous credential systems.
Abstract: Digital signature schemes are a fundamental cryptographic primitive, of use both in its own right, and as a building block in cryptographic protocol design. In this paper, we propose a practical and provably secure signature scheme and show protocols (1) for issuing a signature on a committed value (so the signer has no information about the signed value), and (2) for proving knowledge of a signature on a committed value. This signature scheme and corresponding protocols are a building block for the design of anonymity-enhancing cryptographic systems, such as electronic cash, group signatures, and anonymous credential systems. The security of our signature scheme and protocols relies on the Strong RSA assumption. These results are a generalization of the anonymous credential system of Camenisch and Lysyanskaya.

675 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
20229
202120
202047
201976
2018110
201799