scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Remote Sensing

GovernmentDehra Dūn, India
About: Indian Institute of Remote Sensing is a government organization based out in Dehra Dūn, India. It is known for research contribution in the topics: Land cover & Normalized Difference Vegetation Index. The organization has 756 authors who have published 1355 publications receiving 16915 citations. The organization is also known as: Indian Photo-interpretation Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Andaman Nicobar group of islands has been used to prepare forest type maps using visual and digital methods, and the mapping techniques have been compared with respect to classification and accuracy levels.
Abstract: The Andaman Nicobar group of islands in the Andaman Sea are blessed with luxuriant tropical vegetation. During recent years, vegetation in these islands has been under tremendous pressure due to increased settlement and commercial extraction, Landsat TM data of the Baratang forest division of the Andaman group of islands has been used to prepare forest type maps using visual and digital methods. Digital enhancement techniques have been evaluated to discriminate forest types in a typical environmental set-up. The mapping techniques have been compared with respect to classification and accuracy levels. Finally, the land transformation in the forest division has been studied using past aerial photographs. The study highlights the appropriate methodology required to map forest types.

95 citations

Journal ArticleDOI
TL;DR: The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat Island effect.

95 citations

Journal ArticleDOI
TL;DR: In this article, a vegetation cover type map was generated from a hybrid approach (supervised and unsupervised) classification of 8-10 months IRS Wide Field Sensor (WiFS) composite data (Raw bands, Max NDVI) over the period of 1998 to 1999.

94 citations

Journal ArticleDOI
TL;DR: In this paper, the RUSLE-3D (Revised Universal Soil Loss Equation 3D) model was implemented in geographic information system (GIS) for predicting the soil loss and the spatial patterns of soil erosion risk required for soil conservation planning.
Abstract: The RUSLE-3D (Revised Universal Soil Loss Equation-3D) model was implemented in geographic information system (GIS) for predicting the soil loss and the spatial patterns of soil erosion risk required for soil conservation planning. High resolution remote sensing data (IKONOS and IRS LISS-IV) were used to prepare land use/land cover and soil maps to derive the vegetation cover and the soil erodibility factor whereas Digital Elevation Model (DEM) was used to generate spatial topographic factor. Soil erodibility (K) factor in the sub-watershed ranged from 0.30 to 0.48. The sub-watershed is dominated by natural forest in the hilly landform and agricultural land in the piedmont and alluvial plains. Average soil loss was predicted to be lowest in very dense forest and highest in the open forest in the hilly landform. Agricultural land-1 and agriculture land-2 to have moderately high and low soil erosion risk, respectively. The study predicted that 15% area has ‘moderate’ to ‘moderately high’ and 26% area has high to very high risk of soil erosion in the sub-watershed.

94 citations

Journal ArticleDOI
TL;DR: The comparison of CASA-based annual NPP estimates with the similar products from other operational algorithms indicate that high agreement exists between the CASA and MODIS products over all land covers of the country, while agreement between CASa and C-Fix products is relatively low over the region dominated by agriculture and grassland, and the agreement is very high over the forest land.
Abstract: In the present study, the Carnegie–Ames–Stanford Approach (CASA), a terrestrial biosphere model, has been used to investigate spatiotemporal pattern of net primary productivity (NPP) during 2003 over the Indian subcontinent. The model drivers at 2-min spatial resolution were derived from National Oceanic and Atmospheric Administration advanced very high resolution radiometer normalized difference vegetation index, weather inputs, and soil and land cover maps. The annual NPP was estimated to be 1.57 Pg C (at the rate of 544 g C m − 2), of which 56% contributed by croplands (with 53% of geographic area of the country (GAC)), 18.5% by broadleaf deciduous forest (15% of GAC), 10% by broadleaf evergreen forest (5% of GAC), and 8% by mixed shrub and grassland (19% of GAC). There is very good agreement between the modeled NPP and ground-based cropland NPP estimates over the western India (R 2 = 0.54; p = 0.05). The comparison of CASA-based annual NPP estimates with the similar products from other operational algorithms such as C-fix and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate that high agreement exists between the CASA and MODIS products over all land covers of the country, while agreement between CASA and C-Fix products is relatively low over the region dominated by agriculture and grassland, and the agreement is very low over the forest land. Sensitivity analysis suggest that the difference could be due to inclusion of variable light use efficiency (LUE) across different land cover types and environment stress scalars as downregulator of NPP in the present CASA model study. Sensitivity analysis further shows that the CASA model can overestimate the NPP by 50% of the national budget in absence of downregulators and underestimate the NPP by 27% of the national budget by the use of constant LUE (0.39 gC MJ − 1) across different vegetation cover types.

91 citations


Authors

Showing all 777 results

NameH-indexPapersCitations
Rakesh Kumar91195939017
Sanjay K. Srivastava7336615587
Masako Osumi442006683
Vinay Kumar Dadhwal403226217
Pramod Kumar391704248
Anil K. Mishra383004907
Partha Sarathi Roy371745119
Pawan Kumar Joshi361704268
Kiran Singh341563525
Priyanka Singh341293839
Chandrashekhar Biradar331003529
Amit K. Tiwari331464422
Debashis Mitra321172926
Suresh Kumar294073580
Nidhi Chauhan271072319
Network Information
Related Institutions (5)
Indian Space Research Organisation
5.7K papers, 62.3K citations

79% related

Remote Sensing Center
1.7K papers, 48.2K citations

76% related

Indian Institute of Tropical Meteorology
2.8K papers, 70K citations

75% related

National Geophysical Research Institute
3.2K papers, 60.5K citations

74% related

Virginia Tech College of Natural Resources and Environment
6.2K papers, 142.9K citations

73% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202230
2021193
2020136
2019129
2018163