scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Remote Sensing

GovernmentDehra Dūn, India
About: Indian Institute of Remote Sensing is a government organization based out in Dehra Dūn, India. It is known for research contribution in the topics: Land cover & Normalized Difference Vegetation Index. The organization has 756 authors who have published 1355 publications receiving 16915 citations. The organization is also known as: Indian Photo-interpretation Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The Gandak megafan of eastern Uttar Pradesh and northwestern Bihar lies in the Middle Gangetic Plains as mentioned in this paper and the Gandak River has shifted about 80 km to the east due to tilting in the last 5000 years.
Abstract: The Gandak megafan of eastern Uttar Pradesh and northwestern Bihar lies in the Middle Gangetic Plains. The Gandak River has shifted about 80 km to the east due to tilting in the last 5000 years. This has created a soil chronoassociation similar to the chronosequences found on some flights of river terraces. This chronoassociation has five members, QGD1-5. They are distinguished on the basis of profile development, clay mineralogy and calcium carbonate content. Chlorite transforms to vermiculite on a large scale from QGD1 to QGD3 and decreases drastically in member QGD4. Kaolinite and interstratified kaolinite-smectite are abundant in the older members of the chronoassociation. The youngest soils (QGD1:? 500 b.p., while QGD3 soils, like those on the Older Gandak Plain and Old Rapti Plains date back to 2500 b.p. QGD4 soils, like those on the Oldest Gandak Plain, are dated as? 5000 years b.p., whilst the oldest QGD5 soils, as on the Old Ghaghra Plain and Ganga-Ghaghra Interfluve, date back to 10000 b.p. These soils, which include pedogenic calcite and a? saline epipedon, indicate a dry climatic spell during the period 9000-11000 b.p. Faults developed on the megafan are not related to the basement structures.

145 citations

Journal ArticleDOI
TL;DR: In this article, a dynamic growth model was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus, poplar, and teak (Tectona Grandis Linn. f.).
Abstract: A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg C ha−1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg C ha−1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg C ha−1 yr−1) and Eucalyptus (6 Mg C ha−1 yr−1) plantations followed by moderate growing teak forests (2 Mg C ha−1 yr−1) and slow growing long rotation sal forests (1 Mg C ha−1 yr−1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees + soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length. Extending rotation length from the recommended 120 to 150 years increased the average carbon stock of forest ecosystem (trees + soil) by 12%. The net primary productivity was highest (3.7 Mg ha−1 yr−1) when a 60-year rotation length was applied but decreased with increasing rotation length (e.g., 1.7 Mg ha−1 yr−1) at 150 years. Goal of maximum carbon storage and production of more valuable saw logs can be achieved from longer rotation lengths. ‘No thinning’ has the largest biomass, but from an economical perspective, there will be no wood available from thinning operations to replace fossil fuel for bioenergy and to the pulp industry and such patches have high risks of forest fires, insects etc. Extended rotation lengths and reduced thinning intensity could enhance the long-term capacity of forest ecosystems to sequester carbon. While accounting for effects of climate change, a combination of bioenergy and carbon sequestration will be best to mitigation of CO2 emission in the long term.

142 citations

Journal ArticleDOI
Partha Sarathi Roy1, Mukunda Dev Behera2, M. S. R. Murthy3, Arijit Roy4, Sarnam Singh4, S. P. S. Kushwaha4, Chandra Shekhar Jha5, S. Sudhakar, Pawan Kumar Joshi6, Ch. Sudhakar Reddy5, Stutee Gupta4, Girish Pujar5, C. B. S. Dutt5, V. K. Srivastava5, M. C. Porwal3, Poonam Tripathi2, J. S. Singh7, V. S. Chitale2, Andrew K. Skidmore8, G. Rajshekhar5, Deepak Kushwaha4, Harish Karnatak4, Sameer Saran4, A. Giriraj9, Hitendra Padalia4, Manish Kale10, Subrato Nandy4, C. Jeganathan, C. P. Singh, Chandrashekhar Biradar11, Chandrashekhar Biradar4, Chiranjibi Pattanaik5, D. K. Singh4, G. M. Devagiri, Gautam Talukdar12, Rabindra K. Panigrahy10, Harnam Singh4, J. R. Sharma5, K. Haridasan, Shivam Trivedi, Kiran Singh4, L. Kannan13, M. Daniel, M. K. Misra14, Madhura Niphadkar, Nidhi Nagabhatla15, Nupoor Prasad4, Om Prakash Tripathi, P. Rama Chandra Prasad16, Pushpa Dash4, Qamer Qureshi12, Shri Kant Tripathi, B. R. Ramesh11, Balakrishnan Gowda17, Sanjay Tomar18, Shakil Ahmad Romshoo19, Shilpa Giriraj5, Shirish A. Ravan, Soumit K. Behera20, Subrato Paul, Ashesh Kumar Das21, B. K. Ranganath, T. P. Singh, T. R. Sahu, Uma Shankar, A. R. R. Menon22, Gaurav Srivastava5, Neeti, Subrat Sharma, U. B. Mohapatra23, Ashok Peddi5, Humayun Rashid19, Irfan Salroo19, P. Hari Krishna5, P. K. Hajra24, A. O. Vergheese, Shafique Matin2, Swapnil A. Chaudhary2, Sonali Ghosh12, Udaya Lakshmi5, Deepshikha Rawat3, Kalpana Ambastha5, Akhtar H. Malik19, B. S. S. Devi5, Balakrishna Gowda17, K. C. Sharma, Prashant Mukharjee25, Ajay Sharma26, Priya Davidar27, R. R. Venkata Raju, S. S. Katewa28, Shashi Kant29, Vatsavaya S. Raju, B. P. Uniyal3, Bijan Debnath5, D. K. Rout30, Rajesh Thapa12, Shijo Joseph5, Pradeep Chhetri, Reshma M. Ramachandran1 
TL;DR: This vegetation type map is the most comprehensive one developed for India so far and was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil.

140 citations

Journal ArticleDOI
TL;DR: An attempt has been made to use Shannon's entropy model to assess urban sprawl using IRS P-6 data and topographic sheet in GIS environment for one of the fastest growing city of South India and its surrounding area.
Abstract: India's urban population has grown tremendously in the last four decades from 79 million in 1961 to 285 million in 2001. This fast rate of increase in urban population is mainly due to large scale migration of people from rural and smaller towns to bigger cities in search of better employment opportunities and good life style. This rapid population pressure has resulted in unplanned growth in the urban areas to accommodate these migrant people which in turn leads to urban sprawl. It is a growing problematic aspect of metropolitan and bigger city's growth and development in recent years in India. Urban sprawl has resulted in loss of productive agricultural lands, open green spaces, loss of surface water bodies and depletion of ground water. Therefore, there is a need to study, understand and quantify the urban sprawl. In this paper an attempt has been made to use Shannon's entropy model to assess urban sprawl using IRS P-6 data and topographic sheet in GIS environment for one of the fastest growing city of South India and its surrounding area. The built-up area of the city has increased from 135 km2 in 1971 to 370 km2 in 2005. The study shows that there is a remarkable urban sprawl in and around the twin city between 1971 and 2005 because 215 km2 of agricultural land has lost to built-up land during this period. As a result the urban ecosystem has changed in the last four decades.

138 citations

Journal ArticleDOI
TL;DR: In this paper, a study has been carried out to analyze and report the river bank erosion hazard due to morphometric change of the Ganga River (also called Ganges in English) in the upstream of Farakka Barrage up to Rajmahal.
Abstract: This study has been carried out to analyze and report the river bank erosion hazard due to morphometric change of the Ganga River (also called Ganges in English) in the upstream of Farakka Barrage up to Rajmahal. Morphometric parameters, such as, Sinuosity, Braidedness Index, and percentage of the island area to the total river reach area were measured for the year of 1955, 1977, 1990, 2001, 2003, and 2005 from LANDSAT and IRS satellite images. The analysis shows that there is a drastic increase in all of those parameters over the period of time. This study has found that bank failure is because of certain factors like soil stratification of the river bank, presence of hard rocky area (Rajmahal), high load of sediment and difficulty of dredging and construction of Farakka Barrage as an obstruction to the natural river flow. For the increasing sinuosity, the river has been engulfing the large areas of left bank every year. The victims are mostly Manikchak and Kaliachak-II blocks of Malda district, with a loss of around 1,670 ha agricultural land since 1977. Temporal shift measurements for the river reach between Farakka and Rajmahal has been done with help of 22 cross-sections in this reach. Erosion impact area has also been estimated to emphasize the devastating nature of the hazard.

135 citations


Authors

Showing all 777 results

NameH-indexPapersCitations
Rakesh Kumar91195939017
Sanjay K. Srivastava7336615587
Masako Osumi442006683
Vinay Kumar Dadhwal403226217
Pramod Kumar391704248
Anil K. Mishra383004907
Partha Sarathi Roy371745119
Pawan Kumar Joshi361704268
Kiran Singh341563525
Priyanka Singh341293839
Chandrashekhar Biradar331003529
Amit K. Tiwari331464422
Debashis Mitra321172926
Suresh Kumar294073580
Nidhi Chauhan271072319
Network Information
Related Institutions (5)
Indian Space Research Organisation
5.7K papers, 62.3K citations

79% related

Remote Sensing Center
1.7K papers, 48.2K citations

76% related

Indian Institute of Tropical Meteorology
2.8K papers, 70K citations

75% related

National Geophysical Research Institute
3.2K papers, 60.5K citations

74% related

Virginia Tech College of Natural Resources and Environment
6.2K papers, 142.9K citations

73% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202230
2021193
2020136
2019129
2018163