scispace - formally typeset
Search or ask a question

Showing papers in "Aaps Pharmscitech in 2022"


Journal ArticleDOI
TL;DR: The study provided a theoretical basis for the use of novel microneedle containing curcumin-loaded solid lipid nanoparticles as a useful tool for the treatment of Parkinson’s disease.
Abstract: Curcumin is well known for its neuroprotective effect, and also able to alleviate Parkinsonian features. Clinical application of curcumin is limited due to its low bioavailability. Hence, we hypothesized that the microneedles (MN) containing drug-loaded solid lipid nanoparticles (SLNs) may be able to improve its bioavailability and efficacy. The SLNs were prepared with microemulsion technique using glyceryl monostearate as a lipid and tween 80 as a stabilizer. The particle size, polydispersity index, zeta potential, and entrapment efficiency of prepared SLNs were determined. The optimized formulation was incorporated into microneedle arrays using micromolding technique and fabricated microneedle patch were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, optical microscopy, ex vivo permeation studies, histology studies, and fluorescent microscopy. The fabricated microneedle patch was also evaluated for neuroprotective activity and skin irritation potential. Fourier transform infrared spectroscopy studies of SLNs and microneedles confirmed the chemical compatibility of excipients with curcumin. The developed microneedles were also found to be non-irritant with decreased degree of bradykinesia, high motor coordination, and balance ability. The study provided a theoretical basis for the use of novel microneedle containing curcumin-loaded solid lipid nanoparticles as a useful tool for the treatment of Parkinson’s disease.

17 citations


Journal ArticleDOI
TL;DR: In this paper , a review of 3D printing in the pharma and medical domain is presented. But the focus of the review is on the 3D-printing process and its applications in the pharmaceutical industry.
Abstract: The gemstone of 3-dimensional (3D) printing shines up from the pyramid of additive manufacturing. Three-dimensional bioprinting technology has been predicted to be a game-changing breakthrough in the pharmaceutical industry since the last decade. It is fast evolving and finds its seats in a variety of domains, including aviation, defense, automobiles, replacement components, architecture, movies, musical instruments, forensic, dentistry, audiology, prosthetics, surgery, food, and fashion industry. In recent years, this miraculous manufacturing technology has become increasingly relevant for pharmaceutical purposes. Computer-aided drug (CAD) model will be developed by computer software and fed into bioprinters. Based on material inputs, the printers will recognize and produce the model scaffold. Techniques including stereolithography, selective laser sintering, selective laser melting, material extrusion, material jetting, inkjet-based, fused deposition modelling, binder deposition, and bioprinting expedite the printing process. Distinct advantages are rapid prototyping, flexible design, print on demand, light and strong parts, fast and cost-effective, and environment friendly. The present review gives a brief description of the conceptional 3-dimensional printing, followed by various techniques involved. A short note was explained about the fabricating materials in the pharmaceutical sector. The beam of light is thrown on the various applications in the pharma and medical arena.

16 citations


Journal ArticleDOI
TL;DR: In this article , the microneedles (MN) containing drug-loaded solid lipid nanoparticles (SLNs) may be able to improve its bioavailability and efficacy for the treatment of Parkinson's disease.
Abstract: Curcumin is well known for its neuroprotective effect, and also able to alleviate Parkinsonian features. Clinical application of curcumin is limited due to its low bioavailability. Hence, we hypothesized that the microneedles (MN) containing drug-loaded solid lipid nanoparticles (SLNs) may be able to improve its bioavailability and efficacy. The SLNs were prepared with microemulsion technique using glyceryl monostearate as a lipid and tween 80 as a stabilizer. The particle size, polydispersity index, zeta potential, and entrapment efficiency of prepared SLNs were determined. The optimized formulation was incorporated into microneedle arrays using micromolding technique and fabricated microneedle patch were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, optical microscopy, ex vivo permeation studies, histology studies, and fluorescent microscopy. The fabricated microneedle patch was also evaluated for neuroprotective activity and skin irritation potential. Fourier transform infrared spectroscopy studies of SLNs and microneedles confirmed the chemical compatibility of excipients with curcumin. The developed microneedles were also found to be non-irritant with decreased degree of bradykinesia, high motor coordination, and balance ability. The study provided a theoretical basis for the use of novel microneedle containing curcumin-loaded solid lipid nanoparticles as a useful tool for the treatment of Parkinson’s disease.

15 citations


Journal ArticleDOI
TL;DR: Optimization in the formulation of tamoxifen-loaded niosomes can make them a novel candidate for drug delivery in BC treatment, and a pH-dependent release pattern of formulated niosome displayed slow release at physiological pH and a considerable increase of release at acidic pH, making them a promising candidate fordrug delivery in the BC treatment.
Abstract: The aim, as proof of concept, was to optimize niosomal formulations of tamoxifen in terms of size, morphology, encapsulation efficiency, and release kinetics for further treatment of the breast cancer (BC). Different assays were carried out to evaluate the pro-apoptotic and cytotoxicity impact of tamoxifen-loaded niosomes in two BC cells, MDA-MB-231 and SKBR3. In this study, tamoxifen was loaded in niosomes after optimization in the formulation. The formulation of niosomes supported maximized drug entrapment and minimized their size. The novel formulation showed improvement in storage stability, and after 60 days only, small changes in size, polydispersity index, and drug entrapment were observed. Besides, a pH-dependent release pattern of formulated niosomes displayed slow release at physiological pH (7.4) and a considerable increase of release at acidic pH (5.4), making them a promising candidate for drug delivery in the BC treatment. The cytotoxicity study exhibited high biocompatibility with MCF10A healthy cells, while remarkable inhibitory effects were observed after treatment of cancerous lines, MDA-MB-231, and SKBR3 cells. The IC50 values for the tamoxifen-loaded niosomes were significantly less than other groups. Moreover, treatment with drug-loaded niosomes significantly changed the gene expression pattern of BC cells. Statistically significant down-regulation of cyclin D , cyclin E , VEGFR-1 , MMP-2 , and MMP-9 genes and up-regulation of caspase-3 and caspase-9 were observed. These results were in correlation with cell cycle arrest, lessoned migration capacity, and increased caspase activity and apoptosis induction in cancerous cells. Optimization in the formulation of tamoxifen-loaded niosomes can make them a novel candidate for drug delivery in BC treatment.

14 citations


Journal ArticleDOI
TL;DR: In this article , the authors developed cocrystals of hydrochlorothiazide with coformers such as nicotinamide (NIC), resorcinol (RSL), and catechol (CAT) using hot-melt extrusion (HME) technology.
Abstract: Crystal engineering is an emerging tool for altering the physicochemical properties of drug candidates. The objective of the current investigation was to develop cocrystals of hydrochlorothiazide (HCT) with coformers such as nicotinamide (NIC), resorcinol (RSL), and catechol (CAT) using hot-melt extrusion (HME) technology. The liquid-assisted grinding (LAG) method was used to prepare cocrystals by grinding the drug and coformer in a definite molar ratio as a reference and to check the feasibility of cocrystal formation. Cocrystals were prepared using HME and evaluated with differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy and compared with LAG cocrystals. Barrel temperature was the critical process parameter for producing high-quality cocrystals in HME. All cocrystals exhibited improved solubility compared to the native drug, and HCT-NIC cocrystals showed a two-fold increase in solubility. Similarly, HCT-RSL and HCT-CAT showed higher solubility profiles and improved diffusion/permeability characteristics compared to that of the pure HCT due to the drug-coformer interactions in the cocrystals. In this study, the solubility of the coformer was the key factor determining cocrystal solubilization. However, hot-melt extrusion is an alternative technology for creating pharmaceutical cocrystals and has potential for industrial scale-up.

14 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provided a brief account of the discovery, advantages, composition, synthesis, and comparison with other cutaneous nano-drug delivery systems, applications, and recent developments in this area.
Abstract: Transdermal delivery system has gained significance in drug delivery owing to its advantages over the conventional delivery systems. However, the barriers of stratum corneum along with skin irritation are its major limitations. Various physical and chemical techniques have been employed to alleviate these impediments. Among all these, transfersomes have shown potential for overcoming the associated limitations and successfully delivering therapeutic agents into systemic circulation. These amphipathic vesicles are composed of phospholipids and edge activators. Along with providing elasticity, edge activator also affects the vesicular size and entrapment efficiency of transfersomes. The mechanism behind the enhanced permeation of transfersomes through the skin involves their deformability and osmotic gradient across the application site. Permeation enhancers can further enhance their permeability. Biocompatibility; capacity for carrying hydrophilic, lipophilic as well as high molecular weight therapeutics; deformability; lesser toxicity; enhanced permeability; and scalability along with potential for surface modification, active targeting, and controlled release render them ideal designs for efficient drug delivery. The current review provides a brief account of the discovery, advantages, composition, synthesis, comparison with other cutaneous nano-drug delivery systems, applications, and recent developments in this area.

13 citations


Journal ArticleDOI
TL;DR: In this paper, a review of 3D printed personalized medicine in various cancer types and comments on the possible future directions like application of 4D printing and regularization of 3d printed personalized Medicine in healthcare is presented.
Abstract: Cancer treatment is challenging due to the tumour heterogeneity that makes personalized medicine a suitable technique for providing better cancer treatment. Personalized medicine analyses patient-related factors like genetic make-up and lifestyle and designs treatments that offer the benefits of reduced side effects and efficient drug delivery. Personalized medicine aims to provide a holistic way for prevention, diagnosis and treatment. The customization desired in personalized medicine is produced accurately by 3D printing which is an established technique known for its precision. Different 3D printing techniques exhibit their capability in producing cancer-specific medications for breast, liver, thyroid and kidney tumours. Three-dimensional printing displays major influence on cancer modelling and studies using cancer models in treatment and diagnosis. Three-dimensional printed personalized tumour models like physical 3D models, bioprinted models and tumour-on-chip models demonstrate better in vitro and in vivo correlation in drug screening, cancer metastasis and prognosis studies. Three-dimensional printing helps in cancer modelling; moreover, it has also changed the facet of cancer treatment. Improved treatment via custom-made 3D printed devices, implants and dosage forms ensures the delivery of anticancer agents efficiently. This review covers recent applications of 3D printed personalized medicine in various cancer types and comments on the possible future directions like application of 4D printing and regularization of 3D printed personalized medicine in healthcare.

12 citations


Journal ArticleDOI
TL;DR: TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of cutaneous leishmaniasis (CL) and showed a better safety profile, concluded this study.
Abstract: The prime objective of this study was to develop amphotericin B (AMB) and rifampicin (RIF) co-loaded transfersomal gel (AMB-RIF co-loaded TFG) for effective treatment of cutaneous leishmaniasis (CL). AMB-RIF co-loaded TF was prepared by the thin-film hydration method and was optimized based on particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (%EE), and deformability index. Similarly, AMB-RIF co-loaded TFG was characterized in terms of rheology, spread ability, and pH. In vitro, ex vivo, and in vivo assays were performed to evaluate AMB-RIF co-loaded TF as a potential treatment option for CL. The optimized formulation had vesicles in nanosize range (167 nm) with suitable PDI (0.106), zeta potential (− 19.05 mV), and excellent %EE of RIF (66%) and AMB (85%). Moreover, it had appropriate deformability index (0.952). Additionally, AMB-RIF co-loaded TFG demonstrated suitable rheological behavior for topical application. AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG showed sustained release of the incorporated drugs as compared to AMB-RIF suspension. Furthermore, RIF permeation from AMB-RIF co-loaded TF and AMB-RIF co-loaded TFG was enhanced fivefold and threefold, whereas AMB permeation was enhanced by eightfold and 6.6-fold, respectively. The significantly different IC50, higher CC50, and FIC50 (p < 0.5) showed synergistic antileishmanial potential of AMB-RIF co-loaded TF. Likewise, reduced lesion size and parasitic burden in AMB-RIF co-loaded TF–treated mouse group further established the antileishmanial effect of the optimized formulation. Besides, AMB-RIF co-loaded TFG showed a better safety profile. This study concluded that TFG may be a suitable carrier for co-delivery of AMB-RIF when administered topically for the treatment of CL.

12 citations


Journal ArticleDOI
TL;DR: A review of oxidation pathways, prooxidants, antioxidants, and their complex interplay, which can paradoxically take opposite directions depending on the drug delivery system are discussed.
Abstract: The importance of lipid-based formulations in addressing solubility and ultimately the bioavailability issues of the emerging drug entities is undeniable. Yet, there is scarcity of literature on lipid excipient chemistry and performance, notably in relation to oxidative stability. While not all lipid excipients are prone to oxidation, those with sensitive moieties offer drug delivery solutions that outweigh the manageable oxidative challenges they may present. For example, caprylocaproyl polyoxylglycerides help solubilize and deliver cancer drug to patients, lauroyl polyoxylglycerides enhance the delivery of cholesterol lowering drug, and sesame/soybean oils are critical part of parenteral nutrition. Ironically, excipients with far greater oxidative propensity are omnipresent in pharmaceutical products, a testament to the manageability of oxidative challenges in drug development. Successful formulation development requires awareness of what, where, and how formulation stability may be impacted, and accordingly taking appropriate steps to circumvent or meet the challenges ahead. Aiming to fill the information gap from a drug delivery scientist perspective, this review discusses oxidation pathways, prooxidants, antioxidants, and their complex interplay, which can paradoxically take opposite directions depending on the drug delivery system.

12 citations


Journal ArticleDOI
TL;DR: This review describes the catechin skin delivery approaches based on nanomedicine for treating skin disorders and provides in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine.
Abstract: Tea catechins are a group of flavonoids that show many bioactivities. Catechins have been extensively reported as a potential treatment for skin disorders, including skin cancers, acne, photoaging, cutaneous wounds, scars, alopecia, psoriasis, atopic dermatitis, and microbial infection. In particular, there has been an increasing interest in the discovery of cosmetic applications using catechins as the active ingredient because of their antioxidant and anti-aging activities. However, active molecules with limited lipophilicity have difficulty penetrating the skin barrier, resulting in low bioavailability. Nevertheless, topical application is a convenient method for delivering catechins into the skin. Nanomedicine offers an opportunity to improve the delivery efficiency of tea catechins and related compounds. The advantages of catechin-loaded nanocarriers for topical application include high catechin loading efficiency, sustained or prolonged release, increased catechin stability, improved bioavailability, and enhanced accumulation or targeting to the nidus. Further, various types of nanoparticles, including liposomes, niosomes, micelles, lipid-based nanoparticles, polymeric nanoparticles, liquid crystalline nanoparticles, and nanocrystals, have been employed for topical catechin delivery. These nanoparticles can improve catechin permeation via close skin contact, increased skin hydration, skin structure disorganization, and follicular uptake. In this review, we describe the catechin skin delivery approaches based on nanomedicine for treating skin disorders. We also provide an in-depth description of how nanoparticles effectively improve the skin absorption of tea catechins and related compounds, such as caffeine. Furthermore, we summarize the possible future applications and the limitations of nanocarriers for topical delivery at the end of this review article.

11 citations


Journal ArticleDOI
TL;DR: In this paper , the tamoxifen-loaded niosomes were optimized in terms of size, morphology, encapsulation efficiency, and release kinetics for further treatment of the breast cancer.
Abstract: The aim, as proof of concept, was to optimize niosomal formulations of tamoxifen in terms of size, morphology, encapsulation efficiency, and release kinetics for further treatment of the breast cancer (BC). Different assays were carried out to evaluate the pro-apoptotic and cytotoxicity impact of tamoxifen-loaded niosomes in two BC cells, MDA-MB-231 and SKBR3. In this study, tamoxifen was loaded in niosomes after optimization in the formulation. The formulation of niosomes supported maximized drug entrapment and minimized their size. The novel formulation showed improvement in storage stability, and after 60 days only, small changes in size, polydispersity index, and drug entrapment were observed. Besides, a pH-dependent release pattern of formulated niosomes displayed slow release at physiological pH (7.4) and a considerable increase of release at acidic pH (5.4), making them a promising candidate for drug delivery in the BC treatment. The cytotoxicity study exhibited high biocompatibility with MCF10A healthy cells, while remarkable inhibitory effects were observed after treatment of cancerous lines, MDA-MB-231, and SKBR3 cells. The IC50 values for the tamoxifen-loaded niosomes were significantly less than other groups. Moreover, treatment with drug-loaded niosomes significantly changed the gene expression pattern of BC cells. Statistically significant down-regulation of cyclin D, cyclin E, VEGFR-1, MMP-2, and MMP-9 genes and up-regulation of caspase-3 and caspase-9 were observed. These results were in correlation with cell cycle arrest, lessoned migration capacity, and increased caspase activity and apoptosis induction in cancerous cells. Optimization in the formulation of tamoxifen-loaded niosomes can make them a novel candidate for drug delivery in BC treatment.

Journal ArticleDOI
TL;DR: It was determined that there is a lack of available reference materials and it is difficult to select appropriate ones for modified NP surface characterization, and the trends in standardization required to validate the size and surface measurements of NPs.
Abstract: The present review discusses the current status and difficulties of the analytical methods used to evaluate size and surface modifications of nanoparticle-based pharmaceutical products (NPs) such as liposomal drugs and new SARS-CoV-2 vaccines. We identified the challenges in the development of methods for (1) measurement of a wide range of solid-state NPs, (2) evaluation of the sizes of polydisperse NPs, and (3) measurement of non-spherical NPs. Although a few methods have been established to analyze surface modifications of NPs, the feasibility of their application to NPs is unknown. The present review also examined the trends in standardization required to validate the size and surface measurements of NPs. It was determined that there is a lack of available reference materials and it is difficult to select appropriate ones for modified NP surface characterization. Research and development are in progress on innovative surface-modified NP-based cancer and gene therapies targeting cells, tissues, and organs. Next-generation nanomedicine should compile studies on the practice and standardization of the measurement methods for NPs to design surface modifications and ensure the quality of NPs.

Journal ArticleDOI
TL;DR: In this paper , the effects of critical formulation variables on the rheological properties and printability of gum materials were investigated by constructing a full-factorial design, and the masticatory properties, thermal stability, and disintegration time of the preparations were evaluated.
Abstract: The demand for personalized medicine has received extensive attention, especially in pediatric preparations. An emerging technology, extrusion-based 3D printing, is highly attractive in the field of personalized medicine. In this study, we prepared propranolol hydrochloride (PR) gummy chewable tablets tailored for children by semisolid extrusion (SSE) 3D printing technology to meet personalized medicine needs in pediatrics. In this study, the effects of critical formulation variables on the rheological properties and printability of gum materials were investigated by constructing a full-factorial design. In addition, the masticatory properties, thermal stability, and disintegration time of the preparations were evaluated. Bitterness inhibitors were used to mask the bitterness of the preparations. The results of the full-factorial design showed that the amount of gelatin and carrageenan were the key factors in the formulation. Gelatin can improve printability and masticatory properties, carrageenan can improve thermal stability, and accelerate the disintegration of preparations; therefore, a reasonable combination of both could satisfactorily meet the demand for high-quality 3D printing. γ-Aminobutyric acid can reduce the bitterness of gummy chewable tablets to improve medication compliance and the determined formulation (F7) met the quality requirements. In conclusion, the gum material has excellent potential as an extrusion material for 3D printing. The dosage can be adjusted flexibly by the model shape and size. 3D printing has broad prospects in pediatric preparations.

Journal ArticleDOI
TL;DR: The combined approach affords the possibility of better treatment outcomes but not widely investigated nor yet clinically implemented, in addition to a combined approach in managing CRC.
Abstract: There is growing concern in the rise of colorectal cancer (CRC) cases globally, and with this rise is the presentation of drug resistance. Like other cancers, current treatment options are either invasive or manifest severe side effects. Thus, there is a move towards implementing safer treatment options. Curcumin (CUR), extracted from Curcuma longa, has received significant attention by scientists as possible alternative to chemotherapeutic agents. It is safe and effective against CRC and nontoxic in moderate concentrations. Crucially, it specifically modulates apoptotic effects on CRC. However, the use of CUR is limited by its low solubility and poor bioavailability in aqueous media. These limitations are surmountable through novel approaches, such as nanoencapsulation of CUR, which masks the physicochemical properties of CUR, thus potentiating its anti-CRC effects. Furthermore, chemical derivatization of CUR is another approach that can be used to address the above constraints. This review spans published work in the last two decades, with key findings employing either of the two approaches, in addition to a combined approach in managing CRC. The combined approach affords the possibility of better treatment outcomes but not widely investigated nor yet clinically implemented.

Journal ArticleDOI
TL;DR: The pharmacokinetic and nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route and the pharmacokinetics and biodistribution study showed higher drug concentration in the brain after nasal administration indicating its better potential via the nasal pathway.
Abstract: The current research work aims to study the pharmacokinetic and nasal ciliotoxicity of donepezil liposome–based in situ gel to treat Alzheimer’s disease. The physicochemical properties and first-pass metabolism of donepezil HCl result in low concentrations reaching the brain post oral administration. To overcome this problem, donepezil HCl–loaded liposomes were formulated using the ethanol injection method. The donepezil HCl–loaded liposomes were spherical with a size of 103 ± 6.2 nm, polydispersity index of 0.108 ± 0.008, and entrapment efficiency of 93 ± 5.33 %. The optimized in situ gel with donepezil HCl–loaded liposomes showed 80.11 ± 7.77 % drug permeation than donepezil HCl solution–based in situ gel (13.12 ± 4.84 %) across sheep nasal mucosa. The nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route. The pharmacokinetics and biodistribution study of developed formulation showed higher drug concentration (1239.61 ± 123.60 pg/g) in the brain after nasal administration indicating its better potential via the nasal pathway. To treat Alzheimer’s disease, the administration of liposome-based in situ gel through the nasal pathway can therefore be considered as an effective and promising mode of drug delivery.

Journal ArticleDOI
TL;DR: It is shown that PEGylation significantly decreased mRNA transfection efficiency of DOTAP/chol LNPs, and the influence of various factors in the formulation of DOT AP/ chol cationic LNBP will help improve drug delivery of nucleic acid–based vaccines and therapies.
Abstract: Lipid nanoparticles (LNPs) can be used as delivery vehicles for nucleic acid biotherapeutics. In fact, LNPs are currently being used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. Cationic LNPs composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/cholesterol (chol) LNPs have been classified as one of the most efficient gene delivery systems and are being tested in numerous clinical trials. The objective of this study was to examine the effect of the molar ratio of DOTAP/chol, PEGylation, and lipid to mRNA ratio on mRNA transfection, and explore the applications of DOTAP/chol LNPs in pDNA and oligonucleotide transfection. Here we showed that PEGylation significantly decreased mRNA transfection efficiency of DOTAP/chol LNPs. Among non-PEGylated LNP formulations, 1:3 molar ratio of DOTAP/chol in DOTAP/chol LNPs showed the highest mRNA transfection efficiency. Furthermore, the optimal ratio of DOTAP/chol LNPs to mRNA was tested to be 62.5 µM lipid to 1 μg mRNA. More importantly, these mRNA-loaded nanoparticles were stable for 60 days at 4 °C storage without showing reduction in transfection efficacy. We further found that DOTAP/chol LNPs were able to transfect pDNA and oligonucleotides, demonstrating the ability of these LNPs to transport the cargo into the cell nucleus. The influence of various factors in the formulation of DOTAP/chol cationic LNPs is thus described and will help improve drug delivery of nucleic acid–based vaccines and therapies.

Journal ArticleDOI
TL;DR: In this article, a detailed characterization of two commercially available types of inhalation grade fine lactose powders (Inhalac 400 and Inhalac 500) prepared using different air-jet milling parameters, with a focus on impact of storage conditions on material properties.
Abstract: Dry powder inhalers (DPIs) are favorable devices for the delivery of dry formulations to the lungs; still, they largely fail to deliver higher doses of active pharmaceutical ingredient (API) to the lower airways. Addition of fine particles of excipient (fines) to the blend of API and carrier was shown to improve aerosolization performance. Lactose monohydrate is ubiquitous excipient used for this purpose. Lactose exists in a thermodynamically stable crystalline form; however, processes like milling, sieving, or even mixing may induce alteration of crystalline structure and introduce amorphous domains, which could further affect the physico-chemical properties of the material. Therefore, the aim of this work is a detailed characterization of two commercially available types of inhalation grade fine lactose powders (Inhalac 400 and Inhalac 500) prepared using different air-jet milling parameters, with a focus on impact of storage conditions on material properties. We found that the different milling parameters resulted in variable particle size distribution (PSD), and thus surface areas, variable initial amorphous content, cohesivity, flowability, and moisture sorption of materials. In addition, exposure of fine powders to higher humidity reduced the amorphous content present in the materials, but also affected agglomeration tendency and dispersion behavior of both powders. We believe the obtained findings to be important for the aerosolization performance of carrier-based DPIs containing fines and thus need to be duly considered during formulation development.

Journal ArticleDOI
TL;DR: The mucus-penetrating sodium alginate-chitosan nanoparticles (SA-CS NPs) could enhance the mucus permeability and deliver drugs to the colonic inflammation site, providing new insights into improving the therapeutic effect of UC.
Abstract: The rectal enemas of berberine hydrochloride (BH) have emerged as one of the most effective strategies in the clinical treatment of ulcerative colitis (UC). However, oral dosages of BH exhibit a poor anti-inflammatory effect of UC, which may attribute to premature absorption of BH by the upper gastrointestinal tract. Moreover, the thick colonic mucus layer obstructs the penetration of the drug, resulting in low bioavailability to the inflammatory site of the colon. The aim of this study was to develop the mucus-penetrating sodium alginate-chitosan nanoparticles (SA-CS NPs) for oral delivery of BH to the site of colonic ulcer lesions. BH-loaded SA-CS NPs were developed through the ionic gelation method and analyzed for physicochemical characteristics, release performance, penetrability, site retention, and therapeutic efficacy. The results showed that the NPs have a particle size of 257 nm with a negative charge, presenting desired pH-dependent release behavior. The permeation studies elucidated that negatively charged SA-CS NPs had 2.9 times higher mucus penetration ability than positively charged CS NPs. An ex vivo retention study indicated the high retention of BH-SA-CS NPs at the colon site for more than 16 h. In vivo therapeutic effectiveness demonstrated that the prepared NPs could not only alleviate colonic injury by decreasing the disease activity index and colon mucosa damage index, but also improve the immunologic function by decreasing the spleen index. In conclusion, the BH-SA-CS NPs could enhance the mucus permeability and deliver drugs to the colonic inflammation site, providing new insights into improving the therapeutic effect of UC.

Journal ArticleDOI
TL;DR: A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer as discussed by the authors .
Abstract: Drying of wet granules in a fluidized bed dryer is an important part of the pharmaceutical tablet manufacturing process. Complicated gas-solid flow patterns appear in the fluidized bed dryer, and interphase momentum, heat, and mass transfer happen during the drying process. A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer. The evaporation of water from the surfaces of the particles and the cohesion force between the particles due to the formation of liquid bridges between the particles were also considered in this model. The model was validated by comparing the model predictions with the experimental data available from the literatures. The validated model was used to investigate the drying kinetics of the wet granules in the fluidized bed dryer. The results from numerical simulations showed that the dynamics and rate of increase of temperature of wet particles were considerably different from those of dry particles. Finally, the model was used to investigate the effects of inlet air velocity and inlet air temperature on the drying process. The model predicted increase in drying rate with the increase of inlet air velocity and inlet air temperature. This model can help not only to understand the multiphase multicomponent flow in fluidized bed dryer but also to optimize the drying process in the fluidized bed dryer.

Journal ArticleDOI
TL;DR: This review has significantly unravelled the different computational models for studying and predicting drug bioavailability and provided possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.
Abstract: The oral drug bioavailability (BA) problems have remained inevitable over the years, impairing drug efficacy and indirectly leading to eventual human morbidity and mortality. However, some conventional lab-based methods improve drug absorption leading to enhanced BA, and the recent experimental techniques are up-and-coming. Nevertheless, some have inherent drawbacks in improving the efficacy of poorly insoluble and low impermeable drugs. Drug BA and strategies to overcome these challenges were briefly highlighted. This review has significantly unravelled the different computational models for studying and predicting drug bioavailability. Several computational approaches provide mechanistic insights into the oral drug delivery system simulation of descriptors like solubility, permeability, transport protein-ligand interactions, and molecular structures. The in silico techniques have long been known still are just being applied to unravel drug bioavailability issues. Many publications have reported novel applications of the computational models towards achieving improved drug BA, including predicting gastrointestinal tract (GIT) drug absorption properties and passive intestinal membrane permeability, thus maximizing time and resources. Also, the classical molecular simulation models for free solvation energies of soluble-related processes such as solubilization, dissolutions, supersaturation, and precipitation have been used in virtual screening studies. A few of the tools are GastroPlusTM that supports biowaiver for drugs, mainly BCS class III and predicts drug compounds’ absorption and pharmacokinetic process; SimCyp® simulator for mechanistic modelling and simulation of drug formulation processes; pharmacodynamics analysis on non-linear mixed-effects modelling; and mathematical models, predicting absorption potential/maximum absorption dose. This review provides in silico-experiment annexation in the drug bioavailability enhancement, possible insights that lead to critical opinion on the applications and reliability of the various in silico models as a growing tool for drug development and discovery, thus accelerating drug development processes.

Journal ArticleDOI
TL;DR: Spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity, and this review summarizes various vesicular systems, composition and structure ofspanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin.
Abstract: Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.

Journal ArticleDOI
TL;DR: A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer, and the model predicted increase in drying rate with the increase of inlet air velocity and inletAir temperature.
Abstract: Drying of wet granules in a fluidized bed dryer is an important part of the pharmaceutical tablet manufacturing process. Complicated gas-solid flow patterns appear in the fluidized bed dryer, and interphase momentum, heat, and mass transfer happen during the drying process. A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer. The evaporation of water from the surfaces of the particles and the cohesion force between the particles due to the formation of liquid bridges between the particles were also considered in this model. The model was validated by comparing the model predictions with the experimental data available from the literatures. The validated model was used to investigate the drying kinetics of the wet granules in the fluidized bed dryer. The results from numerical simulations showed that the dynamics and rate of increase of temperature of wet particles were considerably different from those of dry particles. Finally, the model was used to investigate the effects of inlet air velocity and inlet air temperature on the drying process. The model predicted increase in drying rate with the increase of inlet air velocity and inlet air temperature. This model can help not only to understand the multiphase multicomponent flow in fluidized bed dryer but also to optimize the drying process in the fluidized bed dryer.

Journal ArticleDOI
TL;DR: This mini review will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs and cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Abstract: 3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.

Journal ArticleDOI
TL;DR: The application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Abstract: Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.

Journal ArticleDOI
TL;DR: It is suggested that skin could be a viable route for delivery of baclofen through the transdermal routes through the oral and the intrathecal routes.
Abstract: Baclofen, a GABAb agonist, is used in the treatment of multiple sclerosis, a neurodegenerative disease. Currently available dosage forms to deliver baclofen are through the oral and the intrathecal routes. The disadvantage of oral baclofen is that it requires administering the drug multiple times a day, owing to baclofen’s short half-life. On the other hand, intrathecal baclofen pumps are invasive and cannot be an alternative to oral baclofen. Hence, there is a need to develop a dosage form that can deliver baclofen non-invasively and for an extended period at a steady rate, increasing the dosing interval. A transdermal baclofen delivery system might be the solution to this problem. Hence, this research focuses on evaluating microneedles, iontophoresis, and a combination of microneedles-iontophoresis as transdermal delivery enhancement strategies for baclofen. In vitro permeation studies were conducted on dermatomed porcine ear skin using vertical Franz diffusion cells to evaluate transdermal baclofen delivery. Anodal iontophoresis was applied at a current density of 0.5 mA/cm2, and transdermal delivery was assessed from pH 4.5 (45.51±0.76 μg/cm2) and pH 7.4 (68.84±10.13 μg/cm2) baclofen solutions. Iontophoresis enhanced baclofen delivery but failed to reach target delivery. Maltose microneedles were used to create hydrophilic microchannels on the skin, and this technique enhanced baclofen delivery by 89-fold. Both microneedles (447.88±68.06 μg/cm2) and combination of microneedles – iontophoresis (428.56±84.33 μg/cm2) reached the target delivery range (222–1184 μg/cm2) for baclofen. The findings of this research suggest that skin could be a viable route for delivery of baclofen. Graphical Abstract Graphical Abstract

Journal ArticleDOI
TL;DR: Interestingly, cell viability studies using the neutral red assay showed that PVP and HPMC-based solid dispersions had no additional inhibitory effect on Caco-2 cell line compared to the pure drug.
Abstract: Gefitinib is a tyrosine kinase inhibitor that is intended for oral administration yet suffers poor bioavailability along with undesirable side effects. To enhance its solubility and allow colon targeting, gefitinib (ZD) and blends of different ratios of polymers (ternary dispersion) were prepared in organic solution, and solid dispersions were generated employing the spray drying (SD) technique. The methylmethacrylate polymer Eudragit S 100 was incorporated for colon targeting; polyvinylpyrrolidone (PVP) and hydroxypropyl methyl cellulose (HPMC) were utilised to improve the solubility of ZD. SEM, DSC, XRPD, FT-IR, dissolution and cytotoxicity studies were undertaken to characterise and evaluate the developed formulations. SEM images revealed that the rod-shaped crystals of ZD were transformed into collapsed spheres with smaller particle size in the spray-dried particles. DSC, FTIR and XRPD studies showed that ZD loaded in the spray-dried dispersions was amorphous. ZD dissolution and release studies revealed that while a significant ( P < 0.05) increase in the ZD dissolution and release was observed from HPMC-based solid dispersion at pH 7.2 (up to 95% in 15 h), practically no drug was released at pH 1.2 and pH 6.5. Furthermore, the HPMC-based solid dispersions displayed enhanced mucoadhesive properties compared with PVP-based ones. Interestingly, cell viability studies using the neutral red assay showed that PVP and HPMC-based solid dispersions had no additional inhibitory effect on Caco-2 cell line compared to the pure drug.

Journal ArticleDOI
TL;DR: In this paper , the authors developed chitosan and sodium alginate-based hydrogel membranes loaded with curcumin through microwave-based physical cross-linking technique and its evaluation for wound healing potential.
Abstract: This project purposes to develop chitosan and sodium alginate–based hydrogel membranes loaded with curcumin through microwave-based physical cross-linking technique and its evaluation for wound healing potential. For the purpose, curcumin-loaded chitosan and sodium alginate membranes were developed using microwave at fixed frequency of 2450 MHz, power 350 W for 60 s, and tested for their physicochemical attributes like swelling, erosion, surface morphology, drug content, and in vitro drug release. The membranes were also subjected to tensile strength and vibrational and thermal analysis followed by testing in vivo on animals. The results indicated that microwave treatment significantly enhanced the swelling ability, reduced the erosion, and ensured smooth surface texture with optimal drug content. The drug was released in a slow fashion releasing total of 41 ± 4.2% within 24-h period with a higher tensile strength of 16.4 ± 5.3 Mpa. The vibrational analysis results revealed significant fluidization of hydrophilic domains and defluidization of hydrophobic domains which translated into a significant rise in the melting temperature and corresponding enthalpy which were found to be 285.2 ± 3.2 °C and 4.89 ± 1.4 J/g. The in vivo testing revealed higher percent re-epithelialization (75 ± 2.3%) within 14 days of the treatment application in comparison to only gauze and other treatments applied, with higher extent of collagen deposition having well-defined epidermis and stratum corneum formation. The microwave-treated chitosan-sodium alginate hydrogel membranes loaded with curcumin may prove to be another alternative to treat skin injuries. Graphical Abstract Graphical Abstract

Journal ArticleDOI
TL;DR: The factors that limit the translatability of rodent-based intranasal vaccine research to humans are explored, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans.
Abstract: The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.

Journal ArticleDOI
TL;DR: In this article , an ultrasonic approach was used to increase the cutaneous absorption of venlafaxine HCl (VFX) encapsulated in a niosome (venlasosme).
Abstract: The goal of this experimentation was to increase the cutaneous absorption of venlafaxine HCl (VFX) encapsulated in a niosome (venlasosme) produced by an ultrasonic approach. The impact of the cholesterol:surfactant (Chol:Surf) proportion was examined to modify the venlasosme properties. Photon correlation spectroscopy, powder X-ray diffraction (PXRD), SEM, DSC, and ATR-FTIR spectroscopy were utilized to investigate the solid-state and morphology of VFX in the venlasosme. The studies revealed that increasing the level of Chol in the venlasosme increased the size of the particles. Alterations in the Chol to surfactant ratios (when Chol decreased from 2.5 to 0%) caused the zeta potential enhancement from 7.37 ± 0.67 to 15.53 ± 1.47 mV. The venlasosme with the highest cholesterol concentration (2.5%) had the highest encapsulation efficiency (approximately 63%). PXRD results revealed that VFX in venlasosme was in the amorphous form. The levels of VFX in the cutaneous layers and the receiver compartment were higher for the venlasosme gel than for VFX simple gel in the cutaneous permeability study and showed no cutaneous irritancy in rats. Furthermore, the venlasosme gel demonstrated significant antinociceptive and anti-inflammatory responses when compared to the control groups (VFX simple gel and diclofenac gel). The topical administration of the venlasosme gel also considerably increased the tail-flick and hot-plate response time when compared to the VFX simple gel, control groups, and diclofenac gel (p < 0.05). These findings suggest that niosomes can improve VFX efficacy as an antinociceptive and anti-inflammatory substance by improving the medicaments delivery to the specified site.

Journal ArticleDOI
TL;DR: In this paper, a cyclodextrin-metal organic framework was used to improve the antioxidant properties of daidzein using diphenyl-picryl-hydrazyl radical scavenging test.
Abstract: Daidzein, an aglycone-type isoflavone, is useful in the prevention of atherosclerotic cardiovascular diseases. However, the solubility of daidzein remains relatively low even with pharmaceutical interventions (e.g., γ-cyclodextrin inclusion complex). In the present study, daidzein-cyclodextrin-metal organic framework solid dispersion complexes were prepared by the solvent evaporation method. The physicochemical properties of the complex and its effect on the solubility of daidzein were evaluated. The enhancement effect of a cyclodextrin-metal organic framework on the antioxidant properties of daidzein was verified using a diphenyl-picrylhydrazyl radical scavenging test. Powder X-ray diffraction results showed that the characteristic diffraction peaks of daidzein and cyclodextrin-metal organic framework disappeared and new peaks (2θ = 7.1°, 16.5°) were observed. FT-IR measurements showed that the peak derived from the carbonyl group of daidzein shifted to the lower wavenumber. NOESY 1H-1H NMR showed cross peaks at the proton on the resorcinol side of daidzein and the proton (H-5, H-6) in a cyclodextrin-metal organic framework. Dissolution rate of daidzein at 5 min in distilled water was 0.06% for daidzein alone while the daidzein inclusion complex was about 100%. When fasted state simulated intestinal fluid was used, the dissolution rate of the daidzein complex was about 71% compared with that of daidzein alone (~ 3.0%) at 5 min. The daidzein inclusion complex improved the antioxidant capacity to ~ 1.3 times (17.8 µg/mL) compared to the IC50 of daidzein alone (22.9 µg/mL). Preparations of cyclodextrin-metal organic framework inclusion complexes will be a platform in developing pharmaceutical formulations to enhance the bioavailability and activity of drugs.