scispace - formally typeset
Search or ask a question

Showing papers in "Advanced photonics in 2022"


Journal ArticleDOI
TL;DR: A comprehensive review of the recent progress achieved with photonic metamaterials whose properties stem from their modulation in time can be found in this article , where the basic concepts underpinning temporal switching and its relation with spatial scattering are discussed.
Abstract: Time-varying media have recently emerged as a new paradigm for wave manipulation, due to the synergy between the discovery of highly nonlinear materials, such as epsilon-near-zero materials, and the quest for wave applications, such as magnet-free nonreciprocity, multimode light shaping, and ultrafast switching. In this review, we provide a comprehensive discussion of the recent progress achieved with photonic metamaterials whose properties stem from their modulation in time. We review the basic concepts underpinning temporal switching and its relation with spatial scattering and deploy the resulting insight to review photonic time-crystals and their emergent research avenues, such as topological and non-Hermitian physics. We then extend our discussion to account for spatiotemporal modulation and its applications to nonreciprocity, synthetic motion, giant anisotropy, amplification, and many other effects. Finally, we conclude with a review of the most attractive experimental avenues recently demonstrated and provide a few perspectives on emerging trends for future implementations of time-modulation in photonics.

78 citations


Peer ReviewDOI
TL;DR: In this paper , the authors present the recent progress on tunable metasurfaces focused on metalenses and metaholograms, including the basic working principles, advantages, and disadvantages of each working mechanism.
Abstract: Abstract. Metasurfaces have attracted great attention due to their ability to manipulate the phase, amplitude, and polarization of light in a compact form. Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements. Two interesting applications, in particular, are to vary the focal point of metalenses and to switch between holographic images. We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms, including the basic working principles, advantages, and disadvantages of each working mechanism. We classify the tunable stimuli based on the light source and electrical bias, as well as others such as thermal and mechanical modulation. We conclude by summarizing the recent progress of metalenses and metaholograms, and providing our perspectives for the further development of tunable metasurfaces.

34 citations


Journal ArticleDOI
TL;DR: In this article , a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals is presented, focusing on the recent advances of this research area, including the fundamentals, fabrication, and selected photonic applications.
Abstract: Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications. By efficient modification of refractive indices of dielectric crystals, optical waveguides with diverse configurations have been produced by femtosecond laser writing. The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals. The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions. In addition, regardless of the complexity of crystal refractive index changes induced by ultrafast pulses, several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips. Some intriguing devices, e.g., waveguide lasers, wavelength converters, and quantum memories, have been made, exhibiting potential for applications in various areas. Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area, including the fundamentals, fabrication, and selected photonic applications.

23 citations


Journal ArticleDOI
TL;DR: In this article , the authors reviewed the recent progress in nonlinear integrated photonics on thin-film lithium niobate (TFLN) for all these applications, their current trends, and future opportunities and challenges are reviewed.
Abstract: Photonics on thin-film lithium niobate (TFLN) has emerged as one of the most pursued disciplines within integrated optics. Ultracompact and low-loss optical waveguides and related devices on this modern material platform have rejuvenated the traditional and commercial applications of lithium niobate for optical modulators based on the electro-optic effect, as well as optical wavelength converters based on second-order nonlinear effects, e.g., second-harmonic, sum-, and difference-frequency generations. TFLN has also created vast opportunities for applications and integrated solutions for optical parametric amplification and oscillation, cascaded nonlinear effects, such as low-harmonic generation; third-order nonlinear effects, such as supercontinuum generation; optical frequency comb generation and stabilization; and nonclassical nonlinear effects, such as spontaneous parametric downconversion for quantum optics. Recent progress in nonlinear integrated photonics on TFLN for all these applications, their current trends, and future opportunities and challenges are reviewed.

23 citations


Journal ArticleDOI
TL;DR: Liang et al. as mentioned in this paper provided a comprehensive summary of advances in LiN photonics, including some of the typical bulk LiN devices as well as recently developed thin-film LiN on insulator (LNOI) devices.
Abstract: Lithium niobate (LN) has experienced significant developments during past decades due to its versatile properties, especially its large electro-optic (EO) coefficient. For example, bulk LN-based modulators with high speeds and a superior linearity are widely used in typical fiber-optic communication systems. However, with ever-increasing demands for signal transmission capacity, the high power and large size of bulk LN-based devices pose great challenges, especially when one of its counterparts, integrated silicon photonics, has experienced dramatic developments in recent decades. Not long ago, high-quality thin-film LN on insulator (LNOI) became commercially available, which has paved the way for integrated LN photonics and opened a hot research area of LN photonics devices. LNOI allows a large refractive index contrast, thus light can be confined within a more compact structure. Together with other properties of LN, such as nonlinear/acousto-optic/pyroelectric effects, various kinds of high-performance integrated LN devices can be demonstrated. A comprehensive summary of advances in LN photonics is provided. As LN photonics has experienced several decades of development, our review includes some of the typical bulk LN devices as well as recently developed thin film LN devices. In this way, readers may be inspired by a complete picture of the evolution of this technology. We first introduce the basic material properties of LN and several key processing technologies for fabricating photonics devices. After that, various kinds of functional devices based on different effects are summarized. Finally, we give a short summary and perspective of LN photonics. We hope this review can give readers more insight into recent advances in LN photonics and contribute to the further development of LN related research.

22 citations


Proceedings ArticleDOI
TL;DR: In this paper , the authors proposed an all-optical method for fast physical random bit generation (RBG) where chaotic pulses are quantized into a physical random bits stream in the alloptical domain by means of a length of highly nonlinear fiber.
Abstract: . Optical chaos generated by perturbing semiconductor lasers has been viewed, over recent decades, as an excellent entropy source for fast physical random bit generation (RBG) owing to its high bandwidth and large random fluctuations. However, most optical-chaos-based random bit generators perform their quantization process in the electrical domain using electrical analog-to-digital converters, so their real-time rates in a single channel are severely limited at the level of Gb/s due to the electronic bottleneck. Here, we propose and experimentally demonstrate an all-optical method for RBG where chaotic pulses are quantized into a physical random bit stream in the all-optical domain by means of a length of highly nonlinear fiber. In our proof-of-concept experiment, a 10-Gb/s random bit stream is successfully generated on-line using our method. Note that the single-channel real-time rate is limited only by the chaos bandwidth. Considering that the Kerr nonlinearity of silica fiber with an ultrafast response of few femtoseconds is exploited for composing the key part of quantizing laser chaos, this scheme thus may operate potentially at much higher real-time rates than 100 Gb/s provided that a chaotic entropy source of sufficient bandwidth is available.

20 citations


Journal ArticleDOI
TL;DR: In this article , the authors demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level, which can implement continuous Pancharatnam-Berry phase control of circularly polarized microwaves.
Abstract: Abstract. Metasurfaces have enabled the realization of several optical functionalities over an ultrathin platform, fostering the exciting field of flat optics. Traditional metasurfaces are achieved by arranging a layout of static meta-atoms to imprint a desired operation on the impinging wavefront, but their functionality cannot be altered. Reconfigurability and programmability of metasurfaces are the next important step to broaden their impact, adding customized on-demand functionality in which each meta-atom can be individually reprogrammed. We demonstrate a mechanical metasurface platform with controllable rotation at the meta-atom level, which can implement continuous Pancharatnam–Berry phase control of circularly polarized microwaves. As the proof-of-concept experiments, we demonstrate metalensing, focused vortex beam generation, and holographic imaging in the same metasurface template, exhibiting versatility and superior performance. Such dynamic control of electromagnetic waves using a single, low-cost metasurface paves an avenue towards practical applications, driving the field of reprogrammable intelligent metasurfaces for a variety of applications.

19 citations


Journal ArticleDOI
TL;DR: In this paper , an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction, which results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM.
Abstract: Super-resolution structured illumination microscopy (SR-SIM) is an outstanding method for visualizing the subcellular dynamics in living cells. To date, by using elaborately designed systems and algorithms, SR-SIM can achieve rapid, optically sectioned, SR observation with hundreds to thousands of time points. However, real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden. To address this limitation, an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction. This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM. Critically, the increased processing speed does not come at the expense of spatial resolution or sectioning capability, as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.

17 citations


Peer ReviewDOI
TL;DR: In this paper , the authors reviewed recent progress in nonlinear integrated photonics on thin-film lithium niobate (TFLN) for all these applications, their current trends, and future opportunities and challenges are reviewed.
Abstract: Abstract. Photonics on thin-film lithium niobate (TFLN) has emerged as one of the most pursued disciplines within integrated optics. Ultracompact and low-loss optical waveguides and related devices on this modern material platform have rejuvenated the traditional and commercial applications of lithium niobate for optical modulators based on the electro-optic effect, as well as optical wavelength converters based on second-order nonlinear effects, e.g., second-harmonic, sum-, and difference-frequency generations. TFLN has also created vast opportunities for applications and integrated solutions for optical parametric amplification and oscillation, cascaded nonlinear effects, such as low-harmonic generation; third-order nonlinear effects, such as supercontinuum generation; optical frequency comb generation and stabilization; and nonclassical nonlinear effects, such as spontaneous parametric downconversion for quantum optics. Recent progress in nonlinear integrated photonics on TFLN for all these applications, their current trends, and future opportunities and challenges are reviewed.

17 citations


Journal ArticleDOI
TL;DR: In this article , the authors proposed and demonstrated photonic counterparts of hop-objects with exact characteristics of Hopf fibration, Hopf index, and Hopf mapping from real-space vector beams to homotopic hyperspheres representing polarisation states.
Abstract: Structured light fields embody strong spatial variations of polarisation, phase and amplitude. Understanding, characterization and exploitation of such fields can be achieved through their topological properties. Three-dimensional (3D) topological solitons, such as hopfions, are 3D localized continuous field configurations with nontrivial particle-like structures, that exhibit a host of impor-tant topologically protected properties. Here, we propose and demonstrate photonic counterparts of hopfions with exact characteristics of Hopf fibration, Hopf index, and Hopf mapping from real-space vector beams to homotopic hyperspheres representing polarisation states. We experimentally generate photonic hopfions with on-demand high-order Hopf indices and independently controlled topological textures, including N´eel-, Bloch-, and anti-skyrmionic types. We also demonstrate a robust free-space transport of photonic hopfions, thus, showing potential of hopfions for developing optical topological informatics and communications.

15 citations


DOI
TL;DR: In this paper , an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction, which results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM.
Abstract: Abstract. Super-resolution structured illumination microscopy (SR-SIM) is an outstanding method for visualizing the subcellular dynamics in living cells. To date, by using elaborately designed systems and algorithms, SR-SIM can achieve rapid, optically sectioned, SR observation with hundreds to thousands of time points. However, real-time observation is still out of reach for most SIM setups as conventional algorithms for image reconstruction involve a heavy computing burden. To address this limitation, an accelerated reconstruction algorithm was developed by implementing a simplified workflow for SR-SIM, termed joint space and frequency reconstruction. This algorithm results in an 80-fold improvement in reconstruction speed relative to the widely used Wiener-SIM. Critically, the increased processing speed does not come at the expense of spatial resolution or sectioning capability, as demonstrated by live imaging of microtubule dynamics and mitochondrial tubulation.

DOI
TL;DR: In this article , a single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths is demonstrated.
Abstract: Abstract. Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication, light detection and ranging, to metrology and sensing. Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality (Q) factor and supports only a single lasing frequency simultaneously. Here, we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths. As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart, while their Q factors (above 10 million) are even higher due to the significantly reduced scattering on their propagation paths, single-frequency lasing with a linewidth as narrow as 322 Hz is observed. The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers. Finally, enabled by the strong linear electro-optic effect of LN, real-time electro-optical tuning of the microlaser with a high tuning efficiency of ∼50 pm / 100 V is demonstrated.

Journal ArticleDOI
TL;DR: In this paper , the spin Hall effect of light is used to infer microscopic structure within laser-written photonic waveguides, and conduct rapid pathological diagnosis through analysis of healthy and cancerous tissue.
Abstract: Advances in vectorial polarization-resolved imaging are bringing new capabilities to applications ranging from fundamental physics through to clinical diagnosis. Imaging polarimetry requires determination of the Mueller matrix (MM) at every point, providing a complete description of an object’s vectorial properties. Despite forming a comprehensive representation, the MM does not usually provide easily interpretable information about the object’s internal structure. Certain simpler vectorial metrics are derived from subsets of the MM elements. These metrics permit extraction of signatures that provide direct indicators of hidden optical properties of complex systems, while featuring an intriguing asymmetry about what information can or cannot be inferred via these metrics. We harness such characteristics to reveal the spin Hall effect of light, infer microscopic structure within laser-written photonic waveguides, and conduct rapid pathological diagnosis through analysis of healthy and cancerous tissue. This provides new insight for the broader usage of such asymmetric inferred vectorial information.

Journal ArticleDOI
TL;DR: In this paper , a single-frequency ultranarrow linewidth lasing mechanism was demonstrated on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths.
Abstract: Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication, light detection and ranging, to metrology and sensing. Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality (Q) factor and supports only a single lasing frequency simultaneously. Here, we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate (LN) microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths. As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart, while their Q factors (above 10 million) are even higher due to the significantly reduced scattering on their propagation paths, single-frequency lasing with a linewidth as narrow as 322 Hz is observed. The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers. Finally, enabled by the strong linear electro-optic effect of LN, real-time electro-optical tuning of the microlaser with a high tuning efficiency of ∼50 pm / 100 V is demonstrated.

Journal ArticleDOI
TL;DR: A compact label-free nanosensor based on a fiber taper and zinc oxide nanogratings is designed and applied for the early monitoring of apoptosis in individual living cells and provides a new platform for nonfluorescent fiber devices for investigation of cellular events and understanding fundamental cell biochemical engineering.
Abstract: Abstract. The achievement of functional nanomodules for subcellular label-free measurement has long been pursued in order to fully understand cellular functions. Here, a compact label-free nanosensor based on a fiber taper and zinc oxide nanogratings is designed and applied for the early monitoring of apoptosis in individual living cells. Because of its nanoscale dimensions, mechanical flexibility, and minimal cytotoxicity to cells, the sensing module can be loaded in cells for long term in situ tracking with high sensitivity. A gradual increase in the nuclear refractive index during the apoptosis process is observed, revealing the increase in molecular density and the decrease in cell volume. The strategy used in our study not only contributes to the understanding of internal environmental variations during cellular apoptosis but also provides a new platform for nonfluorescent fiber devices for investigation of cellular events and understanding fundamental cell biochemical engineering.

Journal ArticleDOI
TL;DR: In this article , a light-controllable time-domain digital coding metasurface consisting of a full-polarization dynamic metrasurface and a high-speed photoelectric detection circuit is proposed.
Abstract: Programmable metasurfaces enable real-time control of electromagnetic waves in a digital coding manner, which are suitable for implementing time-domain metasurfaces with strong harmonic manipulation capabilities. However, the time-domain metasurfaces are usually realized by adopting the wired electrical control method, which is effective and robust, but there are still some limitations. Here, we propose a light-controllable time-domain digital coding metasurface consisting of a full-polarization dynamic metasurface and a high-speed photoelectric detection circuit, from which the microwave reflection spectra are manipulated by time-varying light signals with periodic phase modulations. As demonstrated, the light-controllable time-domain digital coding metasurface is illuminated by the light signals with two designed time-coding sequences. The measured results show that the metasurface can well generate symmetrical harmonics and white-noise-like spectra, respectively, under such cases in the reflected wave. The proposed light-controllable time-varying metasurface offers a planar interface to tailor and link microwaves with lights in the time domain, which could promote the development of photoelectric hybrid metasurfaces and related multiphysics applications.

Journal ArticleDOI
TL;DR: In this article , an intracavity second harmonic generation (SHG) of laser beams in transverse mode locking (TML) states with a specially designed sandwich such as a microchip laser is presented.
Abstract: Nonlinear frequency conversion of structured beams has been of great interest recently. We present an intracavity second harmonic generation (SHG) of laser beams in transverse mode locking (TML) states with a specially designed sandwich such as a microchip laser. The intracavity nonlinear frequency conversion process of a laser beam in a TML state to its second harmonic is theoretically and experimentally investigated, considering different relative phase and weight parameters between the basic modes in the TML beam. Comparison between the far-field SHG beam patterns of fundamental frequency transverse modes in coherently locked and incoherently superposed states demonstrates that the SHG of TML beams can carry more information. Various rarely observed far-field SHG beam patterns are obtained, and they are consistent with the theoretical analysis and numerical simulations. With the obtained SHG beams, the characteristics of the structured fundamental frequency beams can also be conversely investigated or predicted. This work may have important applications in optical 3D printing, optical trapping of particles, and free-space optical communication areas.

Journal ArticleDOI
TL;DR: In this article , an Er-Yb co-doped silica microsphere cavity with the highest quality (Q) factor (exceeding 108) among the rare-earth doped microcavities is fabricated to demonstrate simultaneous and stable lasing covering ultraviolet, visible, and near-infrared bands under room temperature and a continuous-wave pump.
Abstract: Microlaser with multiple lasing bands is critical in various applications, such as full-color display, optical communications, and computing. Here, we propose a simple and efficient method for homogeneously doping rare earth elements into a silica whispering-gallery microcavity. By this method, an Er-Yb co-doped silica microsphere cavity with the highest quality (Q) factor (exceeding 108) among the rare-earth-doped microcavities is fabricated to demonstrate simultaneous and stable lasing covering ultraviolet, visible, and near-infrared bands under room temperature and a continuous-wave pump. The thresholds of all the lasing bands are estimated to be at the submilliwatt level, where both the ultraviolet and violet continuous wave upconversion lasing from rare earth elements has not been separately demonstrated under room temperature until this work. This ultrahigh-Q doped microcavity is an excellent platform for high-performance multiband microlasers, ultrahigh-precision sensors, optical memories, and cavity-enhanced light–matter interaction studies.

Journal ArticleDOI
TL;DR: In this paper , the first Watt-level all-fiber CW Pr3 + -doped laser operating directly in the green spectral region was reported, which can achieve 3.62 W of continuous-wave power at ∼ 521 nm with a slope efficiency of 20.9%.
Abstract: Green semiconductor lasers are still undeveloped, so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers, precluding compact and low-cost green laser systems. Here, we report the first Watt-level all-fiber CW Pr3 + -doped laser operating directly in the green spectral region, addressing the aforementioned difficulties. The compact all-fiber laser consists of a double-clad Pr3 + -doped fluoride fiber, two homemade fiber dichroic mirrors at visible wavelengths, and a 443-nm fiber-pigtailed pump source. Benefitting from > 10 MW / cm2 high damage intensity of our designed fiber dielectric mirror, the green laser can stably deliver 3.62-W of continuous-wave power at ∼ 521 nm with a slope efficiency of 20.9%. To the best of our knowledge, this is the largest output power directly from green fiber lasers, which is one order higher than previously reported. Moreover, these green all-fiber laser designs are optimized by using experiments and numerical simulations. Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length, output mirror reflectivity, and doping level should be considered to obtain higher power and efficiency. This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine, laser display, underwater detection, and spectroscopy.

Journal ArticleDOI
TL;DR: Deep learning-based design of a massively parallel broadband diffractive neural network for all-optically performing a large group of arbitrarily-selected, complex-valued linear transformations between an input and output field-of-view is reported.
Abstract: Abstract. Large-scale linear operations are the cornerstone for performing complex computational tasks. Using optical computing to perform linear transformations offers potential advantages in terms of speed, parallelism, and scalability. Previously, the design of successive spatially engineered diffractive surfaces forming an optical network was demonstrated to perform statistical inference and compute an arbitrary complex-valued linear transformation using narrowband illumination. We report deep-learning-based design of a massively parallel broadband diffractive neural network for all-optically performing a large group of arbitrarily selected, complex-valued linear transformations between an input and output field of view, each with Ni and No pixels, respectively. This broadband diffractive processor is composed of Nw wavelength channels, each of which is uniquely assigned to a distinct target transformation; a large set of arbitrarily selected linear transformations can be individually performed through the same diffractive network at different illumination wavelengths, either simultaneously or sequentially (wavelength scanning). We demonstrate that such a broadband diffractive network, regardless of its material dispersion, can successfully approximate Nw unique complex-valued linear transforms with a negligible error when the number of diffractive neurons (N) in its design is ≥2NwNiNo. We further report that the spectral multiplexing capability can be increased by increasing N; our numerical analyses confirm these conclusions for Nw > 180 and indicate that it can further increase to Nw ∼ 2000, depending on the upper bound of the approximation error. Massively parallel, wavelength-multiplexed diffractive networks will be useful for designing high-throughput intelligent machine-vision systems and hyperspectral processors that can perform statistical inference and analyze objects/scenes with unique spectral properties.

DOI
TL;DR: In this paper , an intracavity second harmonic generation (SHG) of laser beams in transverse mode locking (TML) states with a specially designed sandwich such as a microchip laser is presented.
Abstract: Abstract. Nonlinear frequency conversion of structured beams has been of great interest recently. We present an intracavity second harmonic generation (SHG) of laser beams in transverse mode locking (TML) states with a specially designed sandwich such as a microchip laser. The intracavity nonlinear frequency conversion process of a laser beam in a TML state to its second harmonic is theoretically and experimentally investigated, considering different relative phase and weight parameters between the basic modes in the TML beam. Comparison between the far-field SHG beam patterns of fundamental frequency transverse modes in coherently locked and incoherently superposed states demonstrates that the SHG of TML beams can carry more information. Various rarely observed far-field SHG beam patterns are obtained, and they are consistent with the theoretical analysis and numerical simulations. With the obtained SHG beams, the characteristics of the structured fundamental frequency beams can also be conversely investigated or predicted. This work may have important applications in optical 3D printing, optical trapping of particles, and free-space optical communication areas.

Journal ArticleDOI
TL;DR: In this paper , the authors show that the time-resolved band structure read out from the dropport output of the excited ring is the intensity projection of the band structure onto specific resonant mode in the synthetic momentum space, where gapless flat band, mode localization effect, and flat to non-flat band transition are observed in experiments and verified by simulations.
Abstract: Constructions of synthetic lattices in photonics attract growingly attentions for exploring interesting physics beyond the geometric dimensionality, among which modulated ring resonator system has been proved as a powerful platform to create different kinds of connectivities between resonant modes along the synthetic frequency dimension with many theoretical proposals. Various experimental realizations are investigated in a single ring resonator, while building beyond simple synthetic lattices in multiple rings with different types remains lacking, which desires to be accomplished as an important step further. Here, we implement the experimental demonstration of generating the one-dimensional Lieb lattice along the frequency axis of light, realized in two coupled ring resonators while the larger ring undergoing dynamic modulation. Such synthetic photonic structure naturally exhibits the physics of flat band. We show that the time-resolved band structure read out from the drop-port output of the excited ring is the intensity projection of the band structure onto specific resonant mode in the synthetic momentum space, where gapless flat band, mode localization effect, and flat to non-flat band transition are observed in experiments and verified by simulations. Our work gives a direct evidence for the constructing synthetic Lieb lattice with two rings, which hence makes a solid step towards experimentally constructing more complicated lattices in multiple rings associated with synthetic frequency dimension.

Journal ArticleDOI
TL;DR: In this paper , a strategy was proposed to prepare radioluminescent polymers that exhibit multiple emission colors from blue to yellow with high brightness in an amorphous state by the radical copolymerization of negatively charged polyacrylic acid and different positively charged quaternary phosphonium salts.
Abstract: . Materials that exhibit visible luminescence upon X-ray irradiation show great potential in the medical and industrial fields. Pure organic materials have recently emerged as promising scintillators for X-ray detection and radiography, due to their diversified design, low cost, and facile preparation. However, recent progress in efficient radioluminescence has mainly focused on small molecules, which are inevitably asso-ciated with processability and repeatability issues. Here, a concise strategy is proposed to prepare radioluminescent polymers that exhibit multiple emission colors from blue to yellow with high brightness in an amorphous state by the radical copolymerization of negatively charged polyacrylic acid and different positively charged quaternary phosphonium salts. One of the obtained polymers exhibits excellent photostability under a high X-ray irradiation dosage of 27.35 Gy and has a detection limit of 149 nGy s − 1 . This performance is superior to that of conventional anthracene-based scintillators. Furthermore, by simply drop-casting a polymer methanol solution on a quartz plate, a transparent scintillator screen was successfully fabricated for X-ray imaging with a resolution of 8.7 line pairs mm − 1 . The pure organic phosphorescent polymers with a highly efficient radioluminescence were demonstrated for the first time, and the strategy reported herein offers a promising pathway to expand the application range of amorphous organic scintillators.

DOI
TL;DR: In this paper , a broadband near-field chiral source in the microwave band was designed and discussed experimental details to visualize spin-momentum locking in three different metamaterial waveguides, including spoof surface plasmon polaritons, line waves, and valley topological insulators.
Abstract: Abstract. Controlling energy flow in waveguides has attractive potential in integrated devices from radio frequencies to optical bands. Due to the spin-orbit coupling, the mirror symmetry will be broken, and the handedness of the near-field source will determine the direction of energy transport. Compared with well-established theories about spin-momentum locking, experimental visualization of unidirectional coupling is usually challenging due to the lack of generic chiral sources and the strict environmental requirement. In this work, we design a broadband near-field chiral source in the microwave band and discuss experimental details to visualize spin-momentum locking in three different metamaterial waveguides, including spoof surface plasmon polaritons, line waves, and valley topological insulators. The similarity of these edge waves relies on the abrupt sign change of intrinsic characteristics of two media across the interface. In addition to the development of experimental technology, the advantages and research status of interface waveguides are summarized, and perspectives on future research are presented to explore an avenue for designing controllable spin-sorting devices in the microwave band.

DOI
TL;DR: In this paper , a chip-scale metalens device is implemented by a SiNx array with a co-and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect.
Abstract: Abstract. Microscopy is very important in research and industry, yet traditional optical microscopy suffers from the limited field-of-view (FOV) and depth-of-field (DOF) in high-resolution imaging. We demonstrate a simultaneous large FOV and DOF microscope imaging technology based on a chip-scale metalens device that is implemented by a SiNx metalens array with a co- and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect. A 4-mm × 4-mm FOV is obtained with a resolution of 1.74 μm and DOF of 200 μm within a wavelength range of 450 to 510 nm, which definitely exceeds the performance of traditional microscopes with the same resolution. Moreover, it is realized in a miniaturized compact prototype, showing an overall advantage for portable and convenient microscope technology.

Journal ArticleDOI
TL;DR: In this paper , a chip-scale metalens device is implemented by a SiNx array with a co-and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect.
Abstract: Microscopy is very important in research and industry, yet traditional optical microscopy suffers from the limited field-of-view (FOV) and depth-of-field (DOF) in high-resolution imaging. We demonstrate a simultaneous large FOV and DOF microscope imaging technology based on a chip-scale metalens device that is implemented by a SiNx metalens array with a co- and cross-polarization multiplexed dual-phase design and dispersive spectrum zoom effect. A 4-mm × 4-mm FOV is obtained with a resolution of 1.74 μm and DOF of 200 μm within a wavelength range of 450 to 510 nm, which definitely exceeds the performance of traditional microscopes with the same resolution. Moreover, it is realized in a miniaturized compact prototype, showing an overall advantage for portable and convenient microscope technology.

DOI
TL;DR: In this paper , the true eigenmodes of atmospheric turbulence have been obtained for free-space structured light modes and shown to be invariant under propagation through the atmosphere, both numerically and experimentally.
Abstract: Abstract. Structured light is routinely used in free-space optical communication channels, both classical and quantum, where information is encoded in the spatial structure of the mode for increased bandwidth. Both real-world and experimentally simulated turbulence conditions have revealed that free-space structured light modes are perturbed in some manner by turbulence, resulting in both amplitude and phase distortions, and consequently, much attention has focused on whether one mode type is more robust than another, but with seemingly inconclusive and contradictory results. We present complex forms of structured light that are invariant under propagation through the atmosphere: the true eigenmodes of atmospheric turbulence. We provide a theoretical procedure for obtaining these eigenmodes and confirm their invariance both numerically and experimentally. Although we have demonstrated the approach on atmospheric turbulence, its generality allows it to be extended to other channels too, such as aberrated paths, underwater, and in optical fiber.

DOI
TL;DR: In this article , the first Watt-level all-fiber CW Pr3-plus-fluoride-doped laser operating directly in the green spectral region was reported.
Abstract: Abstract. Green semiconductor lasers are still undeveloped, so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers, precluding compact and low-cost green laser systems. Here, we report the first Watt-level all-fiber CW Pr3 + -doped laser operating directly in the green spectral region, addressing the aforementioned difficulties. The compact all-fiber laser consists of a double-clad Pr3 + -doped fluoride fiber, two homemade fiber dichroic mirrors at visible wavelengths, and a 443-nm fiber-pigtailed pump source. Benefitting from > 10 MW / cm2 high damage intensity of our designed fiber dielectric mirror, the green laser can stably deliver 3.62-W of continuous-wave power at ∼ 521 nm with a slope efficiency of 20.9%. To the best of our knowledge, this is the largest output power directly from green fiber lasers, which is one order higher than previously reported. Moreover, these green all-fiber laser designs are optimized by using experiments and numerical simulations. Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length, output mirror reflectivity, and doping level should be considered to obtain higher power and efficiency. This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine, laser display, underwater detection, and spectroscopy.

Journal ArticleDOI
TL;DR: In this article , a hybrid brightfield and darkfield transport of intensity (HBDTI) approach was proposed for high-throughput quantitative phase microscopy, where two through-focus intensity stacks corresponding to BF and dark-field illuminations are acquired through a low-numerical-aperture (NA) objective lens.
Abstract: Transport of intensity equation (TIE) is a well-established non-interferometric phase retrieval approach that enables quantitative phase imaging (QPI) by simply measuring intensity images at multiple axially displaced planes. The advantage of a TIE-based QPI system is its compatibility with partially coherent illumination, which provides speckle-free imaging with resolution beyond the coherent diffraction limit. However, TIE is generally implemented with a brightfield (BF) configuration, and the maximum achievable imaging resolution is still limited to the incoherent diffraction limit (twice the coherent diffraction limit). It is desirable that TIE-related approaches can surpass this limit and achieve high-throughput [high-resolution and wide field of view (FOV)] QPI. We propose a hybrid BF and darkfield transport of intensity (HBDTI) approach for high-throughput quantitative phase microscopy. Two through-focus intensity stacks corresponding to BF and darkfield illuminations are acquired through a low-numerical-aperture (NA) objective lens. The high-resolution and large-FOV complex amplitude (both quantitative absorption and phase distributions) can then be synthesized based on an iterative phase retrieval algorithm taking the coherence model decomposition into account. The effectiveness of the proposed method is experimentally verified by the retrieval of the USAF resolution target and different types of biological cells. The experimental results demonstrate that the half-width imaging resolution can be improved from 1230 nm to 488 nm with 2.5 × expansion across a 4 × FOV of 7.19 mm2, corresponding to a 6.25 × increase in space-bandwidth product from ∼5 to ∼30.2 megapixels. In contrast to conventional TIE-based QPI methods where only BF illumination is used, the synthetic aperture process of HBDTI further incorporates darkfield illuminations to expand the accessible object frequency, thereby significantly extending the maximum available resolution from 2NA to ∼5NA with a ∼5 × promotion of the coherent diffraction limit. Given its capability for high-throughput QPI, the proposed HBDTI approach is expected to be adopted in biomedical fields, such as personalized genomics and cancer diagnostics.

Journal ArticleDOI
TL;DR: In this paper , a physics-informed neural network (PINN) is proposed for tomographic reconstructions of biological samples, which can be used for solving the scattering problem much faster than other numerical solutions.
Abstract: Abstract. We propose a physics-informed neural network (PINN) as the forward model for tomographic reconstructions of biological samples. We demonstrate that by training this network with the Helmholtz equation as a physical loss, we can predict the scattered field accurately. It will be shown that a pretrained network can be fine-tuned for different samples and used for solving the scattering problem much faster than other numerical solutions. We evaluate our methodology with numerical and experimental results. Our PINNs can be generalized for any forward and inverse scattering problem.