scispace - formally typeset
Search or ask a question

Showing papers in "Aging and Disease in 2017"


Journal ArticleDOI
TL;DR: It is necessary to know the adverse health effects of 25OHD deficiency, and to design interventions and early treatments for those who are likely to have low levels of25OHD.
Abstract: Vitamin D is one of the essential nutrients to sustain the human health. As a member of the steroid hormone family, it has a classic role in regulating metabolism of calcium and a non-classic role in affecting cell proliferation and differentiation. Epidemiological studies have shown that 25OHD deficiency is closely associated with common chronic diseases such as bone metabolic disorders, tumors, cardiovascular diseases, and diabetes. 25OHD deficiency is also a risk factor for neuropsychiatric disorders and autoimmune diseases. 25OHD deficiency is highly prevalent in the world. It is therefore necessary to know the adverse health effects of 25OHD deficiency, and to design interventions and early treatments for those who are likely to have low levels of 25OHD.

255 citations


Journal ArticleDOI
TL;DR: It is now clear that aging and cancer development either share or diverge in several disease mechanisms, and aging can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear.
Abstract: Aging is the inevitable time-dependent decline in physiological organ function and is a major risk factor for cancer development. Due to advances in health care, hygiene control and food availability, life expectancy is increasing and the population in most developed countries is shifting to an increasing proportion of people at a cancer susceptible age. Mechanisms of aging are also found to occur in carcinogenesis, albeit with shared or divergent end-results. It is now clear that aging and cancer development either share or diverge in several disease mechanisms. Such mechanisms include the role of genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, decreased nutrient sensing and altered metabolism, but also cellular senescence and stem cell function. Cancer cells and aged cells are also fundamentally opposite, as cancer cells can be thought of as hyperactive cells with advantageous mutations, rapid cell division and increased energy consumption, while aged cells are hypoactive with accumulated disadvantageous mutations, cell division inability and a decreased ability for energy production and consumption. Nonetheless, aging and cancer are tightly interconnected and many of the same strategies and drugs may be used to target both, while in other cases antagonistic pleiotrophy come into effect and inhibition of one can be the activation of the other. Cancer can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear. Better understanding of the shared and divergent pathways of aging and cancer is needed.

220 citations


Journal ArticleDOI
Jue Wang1, Bin Cao1, Dong Han1, Miao Sun1, Juan Feng1 
TL;DR: It is suggested that LncRNA H19 could be a new therapeutic target of ischemic stroke because of its relationship with autophagy activation and its expression and function have never been tested in cerebral ischemia and reperfusion injury.
Abstract: Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke.

180 citations


Journal ArticleDOI
TL;DR: Parmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects.
Abstract: Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.

173 citations


Journal ArticleDOI
TL;DR: This work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.
Abstract: Among age-related diseases, cardiovascular and cerebrovascular diseases are major causes of death. Vascular dysfunction is a key characteristic of these diseases wherein age is an independent and essential risk factor. The present work will review morphological alterations of aging vessels in-depth, which includes the discussion of age-related microvessel loss and changes to vasculature involving the capillary basement membrane, intima, media, and adventitia as well as the accompanying vascular dysfunctions arising from these alterations.

164 citations


Journal ArticleDOI
TL;DR: The recent evidence on the scope and problem of skin cancer in the elderly population as well as age-related variations in its clinical management are reviewed, highlighting the potential role of a geriatric approach in optimizing dermato-oncological care.
Abstract: Skin cancer is a worldwide, emerging clinical need in the elderly white population, with a steady increase in incidence rates, morbidity and related medical costs. Skin cancer is a heterogeneous group of cancers comprising cutaneous melanoma and non-melanoma skin cancers (NMSC), which predominantly affect elderly patients, aged older than 65 years. Melanoma has distinct clinical presentations in the elderly patient and represents a challenging question in terms of clinical management. NMSC includes the basal cell carcinoma and cutaneous squamous cell carcinoma and presents a wide disease spectrum in the elderly population, ranging from low-risk to high-risk tumours, advanced and inoperable disease. Treatment decisions for NMSC are preferentially based on tumour characteristics, patient's chronological age and physician's preferences and operational settings. Several treatment options are available for NMSC, from surgery to non-invasive/medical therapies, but patient-based factors, such as geriatric comorbidities and patient's life expectancy, do not frequently modulate treatment goals. In melanoma, age-related variations in clinical management are significant and may frequently lead to under-treatment, limiting access to advanced surgical and medical treatments. Clinical decision-making in the care of elderly skin cancer patient should ideally implement a geriatric assessment, prioritizing patient-based factors and efficiently differentiating fit from frail cancer patients. Current clinical practice guidelines for NMSC and melanoma only partially address geriatric aspects of cancer care, such as frailty, limited life-expectancy, geriatric comorbidities and treatment compliance. We review the recent evidence on the scope and problem of skin cancer in the elderly population as well as age-related variations in its clinical management, highlighting the potential role of a geriatric approach in optimizing dermato-oncological care.

136 citations


Journal ArticleDOI
TL;DR: The neuroprotective effect and its pharmacological mechanism of baicalin and baicalein in various in vivo and in vitro experimental models of ischemic neuronal injury are collected.
Abstract: Ischemic stroke, producing a high mortality and morbidity rate, is a common clinical disease. Enhancing the prevention and control of ischemic stroke is particularly important. Baicalin and its aglycon baicalein are flavonoids extracted from Scutellaria baicalensis, an important traditional Chinese herb. In recent years, a growing body of evidences has shown that baicalin and baicalein could be effective in the treatment of cerebral ischemia. Pharmacokinetic studies have shown that baicalin could penetrate the blood-brain barrier and distribute in cerebral nuclei. Through a variety of in vitro and in vivo models of ischemic neuronal injury, numerous studies have demonstrated that baicalin and baicalein have salutary effect for neuroprotection. Especially, the studies on the pharmacological mechanism showed that baicalin and baicalein have several pharmacological activities, which include antioxidant, anti-apoptotic, anti-inflammatory and anti-excitotoxicity effects, protection of the mitochondria, promoting neuronal protective factors expression and adult neurogenesis effects and many more. This review focuses on the neuroprotective effects of baicalin and baicalein in ischemia or stroke-induced neuronal cell death. We aimed at collecting all important information regarding the neuroprotective effect and its pharmacological mechanism of baicalin and baicalein in various in vivo and in vitro experimental models of ischemic neuronal injury.

130 citations


Journal ArticleDOI
TL;DR: The pharmacological activities of LBPs and other major components of Lycium barbarum are discussed, reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage.
Abstract: Lycium barbarum has been used in China for more than 2,000 years as a traditional medicinal herb and food supplement. Lycium barbarum contains abundant Lycium barbarum polysaccharides (LBPs), betaine, phenolics, carotenoids (zeaxanthin and β-carotene), cerebroside, 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), β-sitosterol, flavonoids and vitamins (in particular, riboflavin, thiamine, and ascorbic acid). LBPs are the primary active components of Lycium barbarum. In this review, we discuss the pharmacological activities of LBPs and other major components. They have been reported to mediate significant anti-aging effects, through antioxidant, immunoregulative, anti-apoptotic activities and reducing DNA damage. Thus, the basic scientific evidence for anti-aging effects of LBPs is already available. However, additional studies are needed to understand mechanisms by which LBPs mediate anti-aging properties. Novel findings from such studies would likely pave the way for the clinical application of traditional chinese medicine Lycium barbarum in modern evidence-based medicine.

118 citations


Journal ArticleDOI
TL;DR: The molecular and cellular pathways that stand in the base of aging related cancer are reviewed, and the inflammatory perspective that link these two processes, and possible molecular targets that may be exploited to modify their courses are suggested.
Abstract: Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.

95 citations


Journal ArticleDOI
TL;DR: Evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Abstract: Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.

91 citations


Journal ArticleDOI
TL;DR: This review aims to lay the ground for fully elucidating the potential mechanisms of Ganoderma lucidum underlying anti-aging effect and its clinical application.
Abstract: Ganoderma lucidum is a white-rot fungus that has been viewed as a traditional Chinese tonic for promoting health and longevity. It has been revealed that several extractions from Ganoderma lucidum, such as Ethanol extract, aqueous extract, mycelia extract, water soluble extract of the culture medium of Ganoderma lucidum mycelia, Ganodermasides A, B, C, D, and some bioactive components of Ganoderma lucidum, including Reishi Polysaccharide Fraction 3, Ganoderma lucidum polysaccharides I, II, III, IV, Ganoderma lucidum peptide, Ganoderma polysaccharide peptide, total G. lucidum triterpenes and Ganoderic acid C1 could exert lifespan elongation or related activities. Although the use of Ganoderma lucidum as an elixir has been around for thousands of years, studies revealing its effect of lifespan extension are only the tip of the iceberg. Besides which, the kinds of extractions or components being comfrimed to be anti-aging are too few compared with the large amounts of Ganoderma lucidum extractions or constituients being discovered. This review aims to lay the ground for fully elucidating the potential mechanisms of Ganoderma lucidum underlying anti-aging effect and its clinical application.

Journal ArticleDOI
TL;DR: In this paper, the authors used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs, n=69), older males (OM, 68.43 yrs), young females (YF, 27.09 yrs; n=71), and young males (YM,27.91 yrs).
Abstract: Normal aging is associated with both structural changes in many brain regions and functional declines in several cognitive domains with advancing age. Advanced neuroimaging techniques enable explorative analyses of structural alterations that can be used as assessments of such age-related changes. Here we used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs; n=69), older males (OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; n=71), and young males (YM, 27.91 yrs; n=71), using 3D T1-weighted MRI data. At the global level, we investigated the influence of age and gender on brain volumes using a two-way analysis of variance. With respect to gender, we used the Pearson correlation to investigate global brain volume alterations due to age in the older and young groups. At the regional level, we used a flexible factorial statistical test to compare the means of gray matter (GM) and white matter (WM) volume alterations among the four groups. We observed different patterns in both the global and regional GM and WM alterations in the young and older groups with respect to gender. At the global level, we observed significant influences of age and gender on global brain volumes. At the regional level, the older subjects showed a widespread reduction in GM volume in regions of the frontal, insular, and cingulate cortices compared to the young subjects in both genders. Compared to the young subjects, the older subjects showed a widespread WM decline prominently in the thalamic radiations, in addition to increased WM in pericentral and occipital areas. Knowledge of these observed brain volume differences and changes may contribute to the elucidation of mechanisms underlying aging as well as age-related brain atrophy and disease.

Journal ArticleDOI
TL;DR: Several pharmacological mechanisms of EGb are reviewed, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis, and some clinical applications of EGB, such as its effect on neuro and cardiovascular protection, and anticancer properties are described.
Abstract: The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer's disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications.

Journal ArticleDOI
TL;DR: This work describes aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases and puts special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases.
Abstract: Neurodegenerative diseases are a heterogeneous, mostly age-associated group of disorders characterized by progressive neuronal loss, the most prevalent being Alzheimer disease. It is anticipated that, with continuously increasing life expectancy, these diseases will pose a serious social and health problem in the near feature. Meanwhile, however, their etiology remains largely obscure even though all possible novel clues are being thoroughly examined. In this regard, a concept has been proposed that p53, as a transcription factor controlling many vital cellular pathways including apoptosis, may contribute to neuronal death common to all neurodegenerative disorders. In this work, we review the research devoted to the possible role of p53 in the pathogenesis of these diseases. We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases, with the ultimate goal to identify the primary element of their pathogenesis.

Journal ArticleDOI
TL;DR: This review is focused on main research conducted during the last decade on Dendrobium plants and their constituents, which have been subjected to investigations of their pharmacological effects involving anticancer, anti-diabetic, neuroprotective and immunomodulating activities, to report their undeniable potential for treating age-related pathologies.
Abstract: Dendrobium represents one of the most important orchid genera, ornamentally and medicinally. Dendrobiums are sympodial epiphytic plants, which is a name they are worthy of, the name coming from Greek origin: "dendros", tree, and "bios", life. Dendrobium species have been used for a thousand years as first-rate herbs in traditional Chinese medicine (TCM). They are source of tonic, astringent, analgesic, antipyretic, and anti-inflammatory substances, and have been traditionally used as medicinal herbs in the treatment of a variety of disorders, such as, nourishing the stomach, enhancing production of body fluids or nourishing Yin. The Chinese consider Dendrobium as one of the fifty fundamental herbs used to treat all kinds of ailments and use Dendrobium tonic for longevity. This review is focused on main research conducted during the last decade (2006-2016) on Dendrobium plants and their constituents, which have been subjected to investigations of their pharmacological effects involving anticancer, anti-diabetic, neuroprotective and immunomodulating activities, to report their undeniable potential for treating age-related pathologies.

Journal ArticleDOI
TL;DR: It is found that tau oligomers accumulate in cerebral microvasculature of human patients with AD and PSP, in association with vascular endothelial and smooth muscle cells, and this findings add to the growing evidence for multifaceted microvascular involvement in the pathogenesis of AD and other neurodegenerative diseases.
Abstract: The importance of vascular contributions to cognitive impairment and dementia (VCID) associated with Alzheimer's disease (AD) and related neurodegenerative diseases is increasingly recognized, however, the underlying mechanisms remain obscure. There is growing evidence that in addition to Aβ deposition, accumulation of hyperphosphorylated oligomeric tau contributes significantly to AD etiology. Tau oligomers are toxic and it has been suggested that they propagate in a "prion-like" fashion, inducing endogenous tau misfolding in cells. Their role in VCID, however, is not yet understood. The present study was designed to determine the severity of vascular deposition of oligomeric tau in the brain in patients with AD and related tauopathies, including dementia with Lewy bodies (DLB) and progressive supranuclear palsy (PSP). Further, we examined a potential link between vascular deposition of fibrillar Aβ and that of tau oligomers in the Tg2576 mouse model. We found that tau oligomers accumulate in cerebral microvasculature of human patients with AD and PSP, in association with vascular endothelial and smooth muscle cells. Cerebrovascular deposition of tau oligomers was also found in DLB patients. We also show that tau oligomers accumulate in cerebral microvasculature of Tg2576 mice, partially in association with cerebrovascular Aβ deposits. Thus, our findings add to the growing evidence for multifaceted microvascular involvement in the pathogenesis of AD and other neurodegenerative diseases. Accumulation of tau oligomers may represent a potential novel mechanism by which functional and structural integrity of the cerebral microvessels is compromised.

Journal ArticleDOI
TL;DR: This review focuses on the pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway.
Abstract: Accumulating evidence has shown that the lung is one of the target organs for microangiopathy in patients with either type 1 or type 2 diabetes mellitus (DM). Diabetes is associated with physiological and structural abnormalities in the diabetic lung concurrent with attenuated lung function. Despite intensive investigations in recent years, the pathogenic mechanisms of diabetic lung injury remain largely elusive. In this review, we summarize currently postulated mechanisms of diabetic lung injury. We mainly focus on the pathogenesis of diabetic lung injury that implicates key pathways, including oxidative stress, non-enzymatic protein glycosylation, polyol pathway, NF-κB pathway, and protein kinase c pathway. We also highlight that while numerous studies have mainly focused on tissue or cell damage in the lung, studies focusing on mitochondrial dysfunction in the diabetic lung have remained sketchy. Hence, further understanding of mitochondrial mechanisms of diabetic lung injury should provide invaluable insights into future therapeutic approaches for diabetic lung injury.

Journal ArticleDOI
TL;DR: This review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties.
Abstract: Aging is an irreversible physiological process that affects all humans. Numerous theories have been proposed to regarding the process from a Western medicine perspective; however, ancient Chinese medicine practices and theories have increasingly gained attention, particularly ginseng, a grass that has been studied for the anti-aging properties of its active constituents. This review seeks to analyze current data on ginseng and its anti-aging properties. The plant species, characteristics, and active ingredients will be introduced. The main part of this review is focused on ginseng and its active components with regards to their effects on prolonging lifespan, the regulation of multiple organ systems including cardiovascular, nervous, immune, and skin, as well as the anti-oxidant and anti-inflammatory properties. The molecular mechanisms of these properties elucidated via various studies are summarized as further evidence of the anti-aging effects of ginseng.

Journal ArticleDOI
TL;DR: This work reviews the existing classification and characteristics of geroprotectors based on their effect on the survival of a group of individuals or pharmaceutics classes, according to the proposed mechanism of their geroprotsective action or theories of aging and offers a new concept based on the maintenance of homeostatic capacity.
Abstract: Although the geroprotectors discovery is a new biomedicine trend and more than 200 compounds can slow aging and increase the lifespan of the model organism, there are still no geroprotectors on the market. The reasons may be partly related to the lack of a unified concept of geroprotector, accepted by the scientific community. Such concept as a system of criteria for geroprotector identification and classification can form a basis for an analytical model of anti-aging drugs, help to consolidate the efforts of various research initiatives in this area and compare their results. Here, we review the existing classification and characteristics of geroprotectors based on their effect on the survival of a group of individuals or pharmaceutics classes, according to the proposed mechanism of their geroprotective action or theories of aging. After discussing advantages and disadvantages of these approaches, we offer a new concept based on the maintenance of homeostatic capacity because aging can be considered as exponential shrinkage of homeostatic capacity leading to the onset of age-related diseases and death. Besides, we review the most promising current screening approaches to finding new geroprotectors. Establishing the classification of existing geroprotectors based on physiology and current understanding of the nature of aging is essential for putting the existing knowledge into a single system. This system could be useful to formulate standards for finding and creating new geroprotectors. Standardization, in turn, would allow easier comparison and combination of experimental data obtained by different research groups.

Journal ArticleDOI
TL;DR: The underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 and TGFβ-1 are discussed as well as the potential roles of testosterone and estrogen.
Abstract: As with many age-related diseases including vascular dysfunction, age is considered an independent and crucial risk factor. Complicated alterations of structure and function in the vasculature are linked with aging hence, understanding the underlying mechanisms of age-induced vascular pathophysiological changes holds possibilities for developing clinical diagnostic methods and new therapeutic strategies. Here, we discuss the underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 (MCP-1) and TGFβ-1 as well as the potential roles of testosterone and estrogen. We then relate all of these to clinical manifestations such as vascular dementia and stroke in addition to reviewing the existing clinical measurements and potential interventions for age-related vascular dysfunction.

Journal ArticleDOI
TL;DR: Overall, metformin supplementation in male mice failed to affect blood glucose, body weights and redox homeostasis at any age, and meetingformin treatment had a deleterious effect on spatial memory and visual acuity, and reduced SOD activity in brain regions.
Abstract: Metformin is an oral anti-diabetic used as first-line therapy for type 2 diabetes. Because benefits of metformin extend beyond diabetes to other age-related pathology, and because its effect on gene expression profiles resembles that of caloric restriction, metformin has a potential as an anti-aging intervention and may soon be assessed as an intervention to extend healthspan. However, beneficial actions of metformin in the central nervous system have not been clearly established. The current study examined the effect of chronic oral metformin treatment on motor and cognitive function when initiated in young, middle-aged, or old male mice. C57BL/6 mice aged 4, 11, or 22 months were randomly assigned to either a metformin group (2 mg/ml in drinking water) or a control group. The mice were monitored weekly for body weight, as well as food and water intake and a battery of behavioral tests for motor, cognitive and visual function was initiated after the first month of treatment. Liver, hippocampus and cortex were collected at the end of the study to assess redox homeostasis. Overall, metformin supplementation in male mice failed to affect blood glucose, body weights and redox homeostasis at any age. It also had no beneficial effect on age-related declines in psychomotor, cognitive or sensory functions. However, metformin treatment had a deleterious effect on spatial memory and visual acuity, and reduced SOD activity in brain regions. These data confirm that metformin treatment may be associated with deleterious effect resulting from the action of metformin on the central nervous system.

Journal ArticleDOI
TL;DR: Clinicians must be prepared to meet all the elderly's health care needs, including these new and emerging health issue, allergy reactions, as the population ages.
Abstract: Allergy reactions are the most common immunological diseases and represent one of the most widespread and fast growing chronic human health problems among people over 15 years of age in developed countries. As populations get older worldwide, allergy manifestations in aged persons will occur more often in the future. To date, there has been much more studies on allergies in children than in adults. As the population ages, clinicians must be prepared to meet all the elderly's health care needs, including these new and emerging health issue. Allergic diseases represent an old/new emerging health issue. Because many common illnesses masquerade as atopic disease, the differential diagnosis of suspected allergic diseases becomes more expanded in an aging population. Research in the field needs to focus on both human and animal model systems to investigate the impact of the aging process on the immunologic pathways underpinning allergy and its different facets.

Journal ArticleDOI
TL;DR: How age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control is discussed.
Abstract: Medical advances made over the last century have increased our lifespan, but age-related diseases are a fundamental health burden worldwide. Aging is therefore a major risk factor for cardiovascular disease, cancer, diabetes, obesity, and neurodegenerative diseases, all increasing in prevalence. However, huge inter-individual variations in aging and disease risk exist, which cannot be explained by chronological age, but rather physiological age decline initiated even at young age due to lifestyle. At the heart of this lies the metabolic system and how this is regulated in each individual. Metabolic turnover of food to energy leads to accumulation of co-factors, byproducts, and certain proteins, which all influence gene expression through epigenetic regulation. How these epigenetic markers accumulate over time is now being investigated as the possible link between aging and many diseases, such as cancer. The relationship between metabolism and cancer was described as early as the late 1950s by Dr. Otto Warburg, before the identification of DNA and much earlier than our knowledge of epigenetics. However, when the stepwise gene mutation theory of cancer was presented, Warburg's theories garnered little attention. Only in the last decade, with epigenetic discoveries, have Warburg's data on the metabolic shift in cancers been brought back to life. The stepwise gene mutation theory fails to explain why large animals with more cells, do not have a greater cancer incidence than humans, known as Peto's paradox. The resurgence of research into the Warburg effect has given us insight to what may explain Peto's paradox. In this review, we discuss these connections and how age-related changes in metabolism are tightly linked to cancer development, which is further affected by lifestyle choices modulating the risk of aging and cancer through epigenetic control.

Journal ArticleDOI
TL;DR: The devising of clinically applicable and scientifically grounded definitions and criteria for the multifactorial degenerative aging process (or “senility” using the existing ICD category), underlying major aging-related diseases, as well as for the safety and effectiveness of interventions against it are examined.
Abstract: It is becoming increasingly clear that in order to accomplish healthy longevity for the population, there is an urgent need for the research and development of effective therapies against degenerative aging processes underlying major aging-related diseases, including heart disease, neurodegenerative diseases, type 2 diabetes, cancer, pulmonary obstructive diseases, as well as aging-related complications and susceptibilities of infectious communicable diseases. Yet, an important incentive for the research and development of such therapies appears to be the development of clinically applicable and scientifically grounded definitions and criteria for the multifactorial degenerative aging process (or "senility" using the existing ICD category), underlying those diseases, as well as for the safety and effectiveness of interventions against it. Such generally agreed definitions and criteria are currently absent. The devising of such criteria is important not only for the sake of their scientific value and their utility for the development of therapeutic solutions for the aging population, but also to comply with and implement major existing national and international programmatic and regulatory requirements. Some methodological suggestions and potential pitfalls for the development of such criteria are examined.

Journal ArticleDOI
TL;DR: It is suggested that EPO treatment improves white matter integrity after cerebral ischemia, which could be attributed to EPO attenuating gliosis and facilitating the microglial polarization toward the beneficial M2 phenotype to promote oligodendrogenesis.
Abstract: Erythropoietin (EPO) promotes oligodendrogenesis and attenuates white matter injury in neonatal rats. However, it is unknown whether this effect extends to adult mice and whether EPO regulate microglia polarization after ischemic stroke. Male adult C57BL/6 mice (25-30g) were subjected to 45 min of middle cerebral artery occlusion (MCAO). EPO (5000 IU/kg) or saline was injected intraperitoneally every other day after reperfusion. Neurological function was evaluated using the rotarod test at 1, 3, 7 and 14 days after MCAO. Brain tissue loss volume was determined by hematoxylin-eosin staining. Immunofluorescence staining and Western blot were also used to assess the severity of white matter injury and phenotypic changes in microglia/macrophages. Bromodeoxyuridine (BrdU) was injected intraperitoneally daily for 1 week to analyze the number of newly proliferating glia cells (oligodendrocytes, microglia, and astrocytes). We found that EPO significantly reduced Brain tissue loss volume, ameliorated white matter injury, and improved neurobehavioral outcomes at 14 days after MCAO (P<0.05). In addition, EPO also increased the number of newly generated oligodendrocytes and attenuated the rapid hypertrophy and hyperplasia of microglia and astrocytes after ischemic stroke (P<0.05). Furthermore, EPO reduced M1 microglia and increased M2 microglia (P<0.05). Taken together, our results suggest that EPO treatment improves white matter integrity after cerebral ischemia, which could be attributed to EPO attenuating gliosis and facilitating the microglial polarization toward the beneficial M2 phenotype to promote oligodendrogenesis.

Journal ArticleDOI
TL;DR: This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of HerbaCistanches’ anti-aging effect and promote its clinical application as anAnti-aging herbal medicine.
Abstract: The Cistanche species ("Rou Cong Rong" in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches' anti-aging effect and promote its clinical application as an anti-aging herbal medicine.

Journal ArticleDOI
Alan R. Hipkiss1
TL;DR: It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms and the possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed.
Abstract: Recent research shows that energy metabolism can strongly influence proteostasis and thereby affect onset of aging and related disease such as Parkinson's disease (PD) Changes in glycolytic and proteolytic activities (influenced by diet and development) are suggested to synergistically create a self-reinforcing deleterious cycle via enhanced formation of triose phosphates (dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate) and their decomposition product methylglyoxal (MG) It is proposed that triose phosphates and/or MG contribute to the development of PD and its attendant pathophysiological symptoms MG can induce many of the macromolecular modifications (eg protein glycation) which characterise the aged-phenotype MG can also react with dopamine to generate a salsolinol-like product, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinaline (ADTIQ), which accumulates in the Parkinson's disease (PD) brain and whose effects on mitochondria, analogous to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), closely resemble changes associated with PD MG can directly damage the intracellular proteolytic apparatus and modify proteins into non-degradable (cross-linked) forms It is suggested that increased endogenous MG formation may result from either, or both, enhanced glycolytic activity and decreased proteolytic activity and contribute to the macromolecular changes associated with PD Carnosine, a naturally-occurring dipeptide, may ameliorate MG-induced effects due, in part, to its carbonyl-scavenging activity The possibility that ingestion of highly glycated proteins could also contribute to age-related brain dysfunction is briefly discussed

Journal ArticleDOI
Haiping Zhao1, Ziping Han1, Guangwen Li1, Sijia Zhang1, Yumin Luo1 
TL;DR: This review will introduce the pharmacological function of Panax notoginseng on lifespan extension,Anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panx notogineng’s anti-aging effect to promote its clinical application.
Abstract: Owing to a dramatic increase in average life expectancy, most countries in the world are rapidly entering an aging society. Therefore, extending health span with pharmacological agents targeting aging-related pathological changes, are now in the spotlight of gerosciences. Panax notoginseng (Burk.) F. H. Chen, a species of the genus Panax, has been called the "Miracle Root for the Preservation of Life," and has long been used as a Chinese herb with magical medicinal value. Panax notoginseng has been extensively employed in China to treat microcirculatory disturbances, inflammation, trauma, internal and external bleeding due to injury, and as a tonic. In recent years, with the deepening of the research pharmacologically, many new functions have been discovered. This review will introduce its pharmacological function on lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer properties, aiming to lay the ground for fully elucidating the potential mechanisms of Panax notoginseng's anti-aging effect to promote its clinical application.

Journal ArticleDOI
TL;DR: The characterizations of aberrant signaling of bone morphogenetic protein (BMP) and mitogen-activated protein kinases (MAPK), and the pathological phenotypes of OPLL-derived mesenchymal stem cells (MSCs) have provided new insights on the molecular mechanisms underlying OPLL.
Abstract: Ossification of the posterior longitudinal ligament (OPLL) is a multi-factorial disease involving an ectopic bone formation of spinal ligaments. It affects 0.8-3.0% aging Asian and 0.1-1.7% aging European Caucasian. The ossified ligament compresses nerve roots in the spinal cord and causes serious neurological problems such as myelopathy and radiculopathy. Research in understanding pathogenesis of OPLL over the past several decades have revealed many genetic and non-genetic factors contributing to the development and progress of OPLL. The characterizations of aberrant signaling of bone morphogenetic protein (BMP) and mitogen-activated protein kinases (MAPK), and the pathological phenotypes of OPLL-derived mesenchymal stem cells (MSCs) have provided new insights on the molecular mechanisms underlying OPLL. This paper reviews the recent progress in understanding the pathophysiology of OPLL and proposes future research directions on OPLL.

Journal ArticleDOI
TL;DR: The role of the cerebellum and basal ganglia, premotor, supplementary motor, and prefrontal areas, primary motor cortex, and parietal cortex is highlighted and its potential as a therapeutic technique in both upper and lower limb stroke rehabilitation is examined.
Abstract: Motor imagery (MI), defined as the mental implementation of an action in the absence of movement or muscle activation, is a rehabilitation technique that offers a means to replace or restore lost motor function in stroke patients when used in conjunction with conventional physiotherapy procedures This article briefly reviews the concepts and neural correlates of MI in order to promote improved understanding, as well as to enhance the clinical utility of MI-based rehabilitation regimens We specifically highlight the role of the cerebellum and basal ganglia, premotor, supplementary motor, and prefrontal areas, primary motor cortex, and parietal cortex Additionally, we examine the recent literature related to MI and its potential as a therapeutic technique in both upper and lower limb stroke rehabilitation