scispace - formally typeset
Search or ask a question
Institution

Penn State Milton S. Hershey Medical Center

HealthcareHershey, Pennsylvania, United States
About: Penn State Milton S. Hershey Medical Center is a healthcare organization based out in Hershey, Pennsylvania, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 8459 authors who have published 13100 publications receiving 397030 citations. The organization is also known as: Penn State & Milton S. Hershey Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: Brain damage in the Levine preparation (unilateral common carotid artery ligation with hypoxia) consists of ischemic neuronal alterations in the ipsilateral forebrain in 7‐day‐postnatal rats.
Abstract: Brain damage in the Levine preparation (unilateral common carotid artery ligation with hypoxia) consists of ischemic neuronal alterations in the ipsilateral forebrain. As the model has been restricted to adult animals, unilateral common carotid artery ligation was carried out in 7-day-postnatal rats. Four to 8 hours later the 25 pups were exposed to 8% oxygen at 37 degrees C for 3.5 hours. Controls consisted of littermates subjected to carotid ligation without subsequent hypoxia, hypoxia without prior ligation, and neither ligation nor hypoxia. After hypoxia the animals were returned to their dams and appeared normal for up to 50 hours. All pups were then killed by perfusion-fixation. Moderate to severe ischemic neuronal changes were seen in the ipsilateral cerebral cortex, striatum, and hippocampus in at least 90% of the animals and included infarction in 56% of the brains. Cortical damage was occasionally laminar but more often occurred in columns at right angles to the pial surface. Unlike adult animals, there was necrosis of white matter, greater ipsilaterally, originating in and spreading from myelinogenic foci. The evolution of ischemic cell change and the associated gliomesodermal reaction was more rapid than in the adult. In 22 additional pups subjected to carotid artery ligation and hypoxia, brains were analyzed for water content. Significant increases (0.6 to 3.3%) in water content of the ipsilateral hemispheres occurred in 11 of 22 brains (50%). Unilateral ischemia combined with hypoxia in developing rats therefore results in neuronal destruction in the same brain regions as in adult animals, but also causes necrosis of white matter. The incidence of increased water content was similar to that of overt infarction. Thus, as previously shown in the adult, brain edema is a consequence rather than a cause of major ischemic damage in the immature animal.

2,001 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an unequivocal role for common genetic variants in the etiology of typical PD and population-specific genetic heterogeneity in this disease is suggested, and supporting evidence that common variation around LRRK2 modulates risk for PD is provided.
Abstract: We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding a-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 x 10(-16)) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 x 10(-16)). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS1, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 x 10(-8)) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 x 10(-5)). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.

1,793 citations

Journal ArticleDOI
TL;DR: By studying the accumulation and cellular distribution of iron during ageing, this work should be able to increase the understanding of these neurodegenerative disorders and develop new therapeutic strategies.
Abstract: There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.

1,644 citations

Journal Article
TL;DR: It should soon prove possible to block polyamine biosynthesis at every step in the pathway, and this approach will enable a full examination of the potential of this approach.
Abstract: The polyamine-biosynthetic pathway represents an inviting target for the development of agents inhibiting carcinogenesis and tumor growth. Polyamines play an essential role in the proliferation and development of mammalian cells. Deranged polyamine metabolism may be an important factor in carcinogenesis. Depletion of polyamines inhibits growth of neoplastic cells in vitro and in animal models. Several different classes of other anticancer agents may under some conditions exert enhanced effects when polyamine levels are depleted. Some suitable inhibitors of polyamine production are currently available and other promising compounds are presently being tested. It should soon prove possible to block polyamine biosynthesis at every step in the pathway. The use of these inhibitors alone and combined either with each other or with other antitumor agents will enable a full examination of the potential of this approach.

1,563 citations


Authors

Showing all 8543 results

NameH-indexPapersCitations
Henrik Kehlet130106976338
Angus C. Nairn11846944330
William M. Pardridge11655147861
Abass Alavi113129856672
David M. Goldenberg108123848224
Jerry L. Workman10328739104
Jack S. Remington10348138006
Peter Szatmari10144644313
Kenneth M. Heilman10070639122
David P. White9936344403
Stefan Faderl9657734155
Stephen J. Benkovic9568942476
James E. Muller9534038497
Yair Lotan9479336991
Anthony E. Pegg9058037403
Network Information
Related Institutions (5)
Mayo Clinic
169.5K papers, 8.1M citations

97% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

96% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

96% related

Baylor College of Medicine
94.8K papers, 5M citations

96% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202284
2021798
2020708
2019678
2018577