scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Condensed Matter Physics in 2022"


Journal ArticleDOI
TL;DR: The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field as discussed by the authors . Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent of that observed in quantum materials.
Abstract: The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent of that observed in quantum materials. Nevertheless, much of its phase diagram remains controversial. Here, we review a subset of what is known about the Hubbard model, based on exact results or controlled approximate solutions in various limits, for which there is a suitable small parameter. Our primary focus is on the ground state properties of the system on various lattices in two spatial dimensions, although both lower and higher dimensions are discussed as well. Finally, we highlight some of the important outstanding open questions.

74 citations


Journal ArticleDOI
TL;DR: In this article , the authors present a new playground for quantum many-body physics and a tractable setting to explore universal collective phenomena far from equilibrium. But their model is not suitable for quantum information and entanglement.
Abstract: Quantum circuits—built from local unitary gates and local measurements—are a new playground for quantum many-body physics and a tractable setting to explore universal collective phenomena far from equilibrium. These models have shed light on longstanding questions about thermalization and chaos, and on the underlying universal dynamics of quantum information and entanglement. In addition, such models generate new sets of questions and give rise to phenomena with no traditional analog, such as dynamical phase transitions in quantum systems that are monitored by an external observer. Quantum circuit dynamics is also topical in view of experimental progress in building digital quantum simulators that allow control of precisely these ingredients. Randomness in the circuit elements allows a high level of theoretical control, with a key theme being mappings between real-time quantum dynamics and effective classical lattice models or dynamical processes. Many of the universal phenomena that can be identified in this tractable setting apply to much wider classes of more structured many-body dynamics. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

69 citations


Journal ArticleDOI
TL;DR: In this paper , a review of recent advances in the understanding of symmetry in quantum many-body systems offers the possibility of a generalized Landau paradigm that encompasses all equilibrium phases of matter.
Abstract: Recent advances in our understanding of symmetry in quantum many-body systems offer the possibility of a generalized Landau paradigm that encompasses all equilibrium phases of matter. This is a brief and elementary review of some of these developments. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

68 citations


Journal ArticleDOI
TL;DR: The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science as mentioned in this paper .
Abstract: The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. Although analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impressive progress in achieving quantitative accurate results over the past several years. This article gives an introduction to the model, motivates common questions, and illustrates the progress that has been achieved over recent years in revealing various aspects of the correlation physics of the model.

63 citations


Journal ArticleDOI
TL;DR: Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues as discussed by the authors .
Abstract: Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet/dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or non-universal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions.

63 citations


Journal ArticleDOI
TL;DR: Recently, the concepts of topological phases have been extended to non-Hermitian Hamiltonians, whose eigenvalues can be complex as discussed by the authors , which can also cause a boundary phenomenon called the nonhermitian skin effect, which is an extreme sensitivity of the spectrum to the boundary condition.
Abstract: The past decades have witnessed an explosion of interest in topological materials, and a lot of mathematical concepts have been introduced in condensed matter physics. Among them, the bulk-boundary correspondence is the central topic in topological physics, which has inspired researchers to focus on boundary physics. Recently, the concepts of topological phases have been extended to non-Hermitian Hamiltonians, whose eigenvalues can be complex. Besides the topology, non-Hermiticity can also cause a boundary phenomenon called the non-Hermitian skin effect, which is an extreme sensitivity of the spectrum to the boundary condition. In this article, we review developments in non-Hermitian topological physics by focusing mainly on the boundary problem. As well as the competition between non-Hermitian and topological boundary phenomena, we discuss the topological nature inherent in non-Hermiticity itself. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

43 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the phenomenon of quantum many-body scars, which can give rise to certain species of stable quasiparticles throughout the energy spectrum, and provide a pedagogical exposition of this physics via a simple yet comprehensive example, that of a spin-1 XY model.
Abstract: Weakly interacting quasiparticles play a central role in the low-energy description of many phases of quantum matter. At higher energies, however, quasiparticles cease to be well defined in generic many-body systems owing to a proliferation of decay channels. In this review, we discuss the phenomenon of quantum many-body scars, which can give rise to certain species of stable quasiparticles throughout the energy spectrum. This goes along with a set of unusual nonequilibrium phenomena including many-body revivals and nonthermal stationary states. We provide a pedagogical exposition of this physics via a simple yet comprehensive example, that of a spin-1 XY model. We place our discussion in the broader context of symmetry-based constructions of many-body scar states, projector embeddings, and Hilbert space fragmentation. We conclude with a summary of experimental progress and theoretical puzzles. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

42 citations


Journal ArticleDOI
TL;DR: In this article , the authors survey progress on topological properties of magnon systems and highlight aspects of topological matter that are unique to magnon system and the avenues yet to be fully investigated.
Abstract: At sufficiently low temperatures, magnetic materials often enter correlated phases hosting collective, coherent magnetic excitations such as magnons or triplons. Drawing on the enormous progress on topological materials of the past few years, recent research has led to new insights into the geometry and topology of these magnetic excitations. Berry phases associated with magnetic dynamics can lead to observable consequences in heat and spin transport, whereas analogs of topological insulators and semimetals can arise within magnon band structures from natural magnetic couplings. Magnetic excitations offer a platform to explore the interplay of magnetic symmetries and topology, drive topological transitions using magnetic fields, examine the effects of interactions on topological bands, and generate topologically protected spin currents at interfaces. In this review, we survey progress on all these topics, highlighting aspects of topological matter that are unique to magnon systems and the avenues yet to be fully investigated.

39 citations


Journal ArticleDOI
TL;DR: In this article , the authors review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production.
Abstract: Active systems evade the rules of equilibrium thermodynamics by constantly dissipating energy at the level of their microscopic components. This energy flux stems from the conversion of a fuel, present in the environment, into sustained individual motion. It can lead to collective effects without any equilibrium equivalent, such as a phase separation for purely repulsive particles, or a collective motion (flocking) for aligning particles. Some of these effects can be rationalized by using equilibrium tools to recapitulate nonequilibrium transitions. An important challenge is then to delineate systematically to which extent the character of these active transitions is genuinely distinct from equilibrium analogs. We review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production. We describe how this relates to the underlying energy dissipation or thermodynamic entropy production, and how it is influenced by collective behavior. Then, we review the possibility to construct thermodynamic ensembles out-of-equilibrium, where trajectories are biased towards atypical values of nonequilibrium observables. We show that this is a generic route to discovering unexpected phase transitions in active matter systems, which can also inform their design.

27 citations


Journal ArticleDOI
TL;DR: The authors analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splaybend and splay nematic phases.
Abstract: This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well...

22 citations


Journal ArticleDOI
TL;DR: In this article , the authors provide a review of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an odactory signal.
Abstract: Fluid turbulence is a double-edged sword for the navigation of macroscopic animals, such as birds, insects, and rodents. On the one hand, turbulence enables pheromone communication among mates and the possibility of locating food by their odors from long distances. Molecular diffusion would indeed be unable to spread odors over relevant distances in natural conditions. On the other hand, turbulent flows are hard to predict, and learning effective maneuvers to navigate them is challenging, as we discuss in this review. We first provide a summary of the olfactory organs that sense airborne or surface-bound odors, as well as the computational tasks that animals face when extracting information useful for navigation from an olfactory signal. A compendium of the dynamics of turbulent transport emphasizes those aspects that directly impact animals’ behavior. The state of the art on navigational strategies is discussed, followed by a concluding section dedicated to future challenges in the field.

Journal ArticleDOI
TL;DR: In this article , the authors analyzed modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bent, and splay nematic phases, as well as the twist-grain-boundary and helical nanofilament variations on smectic phases.
Abstract: This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofilament variations on smectic phases. The analysis uses the concept of four fundamental modes of director deformation: twist, bend, splay, and a fourth mode related to saddle-splay. Each mode is coupled to a specific type of molecular order: chirality, polarization perpendicular and parallel to the director, and octupolar order. When the liquid crystal develops one type of spontaneous order, the ideal local structure becomes nonuniform, with the corresponding director deformation. In general, the ideal local structure is frustrated; it cannot fill space. As a result, the liquid crystal must form a complex global phase, which may have a combination of deformation modes, and may have a periodic array of defects. Thus, the concept of an ideal local structure under geometric frustration provides a unified framework to understand the wide variety of modulated phases.

Journal ArticleDOI
TL;DR: In this article , a detailed exposition on the formalism of quantum master equations for open Floquet systems and highlight recent work investigating whether equilibrium statistical mechanics applies to Floquet states is presented. But this work does not consider the effect of dissipation, which is ubiquitous in nature.
Abstract: In Floquet engineering, periodic driving is used to realize novel phases of matter that are inaccessible in thermal equilibrium. For this purpose, the Floquet theory provides us a recipe for obtaining a static effective Hamiltonian. Although many existing works have treated closed systems, it is important to consider the effect of dissipation, which is ubiquitous in nature. Understanding the interplay of periodic driving and dissipation is a fundamental problem of nonequilibrium statistical physics that is receiving growing interest because of the fact that experimental advances have allowed us to engineer dissipation in a controllable manner. In this review, we give a detailed exposition on the formalism of quantum master equations for open Floquet systems and highlight recent work investigating whether equilibrium statistical mechanics applies to Floquet states. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this article , the authors discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn explain why hydrophobic interactions become stronger upon increasing temperature.
Abstract: The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology and beyond. % Here, we review the theoretical, computational and experimental developments which underpin a contemporary understanding of hydrophobic effects. % We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.

Journal ArticleDOI
TL;DR: In this paper , the authors highlight the two central ingredients driving the significant macroscopic responses: the Berry curvature enhanced because of nontrivial band topology in momentum space, and the cluster magnetic multipoles in real space.
Abstract: Macroscopic responses of magnets are often governed by magnetization and, thus, have been restricted to ferromagnets. However, such responses are strikingly large in the newly developed topological magnets, breaking the conventional scaling with magnetization. Taking the recently discovered antiferromagnetic (AF) Weyl semimetals as a prime example, we highlight the two central ingredients driving the significant macroscopic responses: the Berry curvature enhanced because of nontrivial band topology in momentum space, and the cluster magnetic multipoles in real space. The combination of large Berry curvature and multipoles enables large macroscopic responses such as the anomalous Hall and Nernst effects, the magneto-optical effect, and the novel magnetic spin Hall effect in antiferromagnets with negligible net magnetization, but also allows us to manipulate these effects by electrical means. Furthermore, nodal-point and nodal-line semimetallic states in ferromagnets may provide the strongly enhanced Berry curvature near the Fermi energy, leading to large responses beyond the conventional magnetization scaling. These significant properties and functions of the topological magnets lay the foundation for future technological development such as spintronics and thermoelectric technology.

Journal ArticleDOI
TL;DR: The goal is to help the reader not only appreciate the many possibilities offered by tensor networks, but also to find their way through state-of-the-art codes, their applicability and some avenues of ongoing progress.
Abstract: Tensor networks provide extremely powerful tools for the study of complex classical and quantum many-body problems. Over the past two decades, the increment in the number of techniques and applications has been relentless, and especially the last ten years have seen an explosion of new ideas and results that may be overwhelming for the newcomer. This short review introduces the basic ideas, the best established methods, and some of the most significant algorithmic developments that are expanding the boundaries of the tensor network potential. The goal of this review is to help the reader not only appreciate the many possibilities offered by tensor networks but also find their way through state-of-the-art codes, their applicability, and some avenues of ongoing progress. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized some of the relevant features exhibited by binary mixtures of Bose-Einstein condensates in the presence of coherent coupling at zero temperature, which can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer associated with spin-orbit effects.
Abstract: This article summarizes some of the relevant features exhibited by binary mixtures of Bose–Einstein condensates in the presence of coherent coupling at zero temperature. The coupling, which is experimentally produced by proper photon transitions, can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer (Raman coupling) associated with spin–orbit effects. The nature of the quantum phases exhibited by coherently coupled mixtures is discussed in detail, including their paramagnetic, ferromagnetic, and, in the case of spin–orbit coupling, supersolid phases. The behavior of the corresponding elementary excitations is discussed, with explicit emphasis on the novel features caused by the spin-like degree of freedom. Focus is further given to the topological excitations (solitons, vortices) as well as to the superfluid properties. This review also points out relevant open questions that deserve more systematic theoretical and experimental investigations.

Journal ArticleDOI
TL;DR: In this article , a review of systems that display odd viscosity and odd elasticity is presented, with an emphasis on their rich phenomenology, including transverse responses, modified dislocation dynamics, and topological waves.
Abstract: Elasticity typically refers to a material's ability to store energy, whereas viscosity refers to a material's tendency to dissipate it. In this review, we discuss fluids and solids for which this is not the case. These materials display additional linear response coefficients known as odd viscosity and odd elasticity. We first introduce odd viscosity and odd elasticity from a continuum perspective, with an emphasis on their rich phenomenology, including transverse responses, modified dislocation dynamics, and topological waves. We then provide an overview of systems that display odd viscosity and odd elasticity. These systems range from quantum fluids and astrophysical gases to active and driven matter. Finally, we comment on microscopic mechanisms by which odd viscosity and odd elasticity arise.

Journal ArticleDOI
TL;DR: In this paper , the authors review the numerical and theoretical modeling of active colloids propelled by self-generated near-surface flows, and discuss recent advances in selected topics in which modeling of an active colloid is used to study motion in crowded and complex environments, microrheology in active baths, active colloidal engines, adaptive responses of colloids with the help of machine learning techniques, as well as effects of colloid and fluid inertia.
Abstract: Active colloids are self-propelled particles moving in viscous fluids by consuming fuel from their surroundings. Here, we review the numerical and theoretical modeling of active colloids propelled by self-generated near-surface flows. We start with the generic model of an active Brownian particle taking into account potential forces and effective pairwise interaction, which include hydrodynamic and phoretic interactions. Also, the squirmer as a model microswimmer is introduced. We then discuss the explicit modeling of self-generated fluid flow and the full hydrodynamic-chemical coupling. Finally, we discuss recent advances in selected topics in which modeling of active colloids is used to study motion in crowded and complex environments, microrheology in active baths, active colloidal engines, adaptive responses of active colloids with the help of machine learning techniques, as well as effects of colloid and fluid inertia. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: This work reviews recent work in the emerging field of physical learning, describing theoretical and experimental advances in areas ranging from molecular self-assembly to flow networks and mechanical materials.
Abstract: Learning is traditionally studied in biological or computational systems. The power of learning frameworks in solving hard inverse problems provides an appealing case for the development of physical learning in which physical systems adopt desirable properties on their own without computational design. It was recently realized that large classes of physical systems can physically learn through local learning rules, autonomously adapting their parameters in response to observed examples of use. We review recent work in the emerging field of physical learning, describing theoretical and experimental advances in areas ranging from molecular self-assembly to flow networks and mechanical materials. Physical learning machines provide multiple practical advantages over computer designed ones, in particular by not requiring an accurate model of the system, and their ability to autonomously adapt to changing needs over time. As theoretical constructs, physical learning machines afford a novel perspective on how physical constraints modify abstract learning theory.

Journal ArticleDOI
TL;DR: The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in a magnetic material, which can be detected electrically via the inverse spin Hall effect in a metallic contact as mentioned in this paper .
Abstract: The spin Seebeck effect (SSE) refers to the generation of a spin current as a result of a temperature gradient in a magnetic material, which can be detected electrically via the inverse spin Hall effect in a metallic contact. Since the discovery of SSE in 2008, intensive studies on the SSE have been conducted to elucidate its origin. SSEs appear in a wide range of magnetic materials including ferro-, ferri-, and antiferromagnets and also paramagnets with classical or quantum spin fluctuation. SSE voltage reflects fundamental properties of a magnet, such as elementary excitation, static magnetic order, spin correlation, and spin transport. In this article, we review recent progress on the SSEs in various systems, with particular emphasis on its emerging role as a probe of these magnetic properties in solids. We also briefly discuss the recently discovered nuclear SSE. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors and the loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways as mentioned in this paper .
Abstract: Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors. The loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways. Superconductivity in materials lacking inversion symmetry, or noncentrosymmetric materials, has become an important topic. These materials show unusual magnetic and magnetoelectric properties and can host topological superconductivity. Recently, crystal structures with local, but not global inversion-symmetry breaking have attracted attention. Here, superconductivity can exhibit phenomena not naively expected in centrosymmetric materials. In this review, we first introduce the concept of locally noncentrosymmetric crystals and different material realizations. We then discuss consequences of such local symmetry breaking on the normal state electronic structure and the classification of superconducting order parameters. Finally, we review the expected and, in parts, already observed phenomenology of unconventional superconductivity and possible topological superconducting phases. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this article , a review of recent progress in scanning superconducting quantum interference devices (SQUID) microscopy is presented, where the authors demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states and more.
Abstract: Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging new quantum materials.

Journal ArticleDOI
TL;DR: In this article , the authors review the current state of understanding regarding the relation between the physics at the particle scale and the rheology at the macroscopic scale and further show how this perspective opens new avenues for the development of continuum models for dense suspensions.
Abstract: Dense suspensions of particles are relevant to many applications and are a key platform for developing a fundamental physics of out-of-equilibrium systems. They present challenging flow properties, apparently turning from liquid to solid upon small changes in composition or, intriguingly, in the driving forces applied to them. The emergent physics close to the ubiquitous jamming transition (and to some extent the glass and gelation transitions) provides common principles with which to achieve a consistent interpretation of a vast set of phenomena reported in the literature. In light of this, we review the current state of understanding regarding the relation between the physics at the particle scale and the rheology at the macroscopic scale. We further show how this perspective opens new avenues for the development of continuum models for dense suspensions.

Journal ArticleDOI
TL;DR: In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of fundamental physics and with respect to engineering applications as discussed by the authors .
Abstract: In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progress for skyrmion research in thin film systems and we discuss promising new directions, which will further invigorate the field.

Journal ArticleDOI
TL;DR: A brief overview of the first-principles modeling of ferroelectric perovskite oxides over the past 30 years can be found in this article , where the authors provide a review of key theoretical advances such as the modern theory of polarization, the computation of functional properties as energy derivatives, the explicit treatment of finite fields, or the advent of second-principle methods to extend the length and timescale of the simulations.
Abstract: Taking a historical perspective, we provide a brief overview of the first-principles modeling of ferroelectric perovskite oxides over the past 30 years. We emphasize how the work done by a relatively small community on the fundamental understanding of ferroelectricity and related phenomena has been at the origin of consecutive theoretical breakthroughs, with an impact going often well beyond the limit of the ferroelectric community. In this context, we first review key theoretical advances such as the modern theory of polarization, the computation of functional properties as energy derivatives, the explicit treatment of finite fields, or the advent of second-principles methods to extend the length and timescale of the simulations. We then discuss how these have revolutionized our understanding of ferroelectricity and related phenomena in this technologically important class of compounds.

Peer ReviewDOI
TL;DR: In this paper , the authors reviewed ideas and recent progress in employing the language and tools from physics to develop a deeper understanding about the dynamics of pedestrians, from dilute to dense, and showed that human crowds exhibit a remarkable set of universal features and statistically reproducible behaviors.
Abstract: Understanding the behavior of human crowds is a key step toward a safer society and more livable cities. Despite the individual variability and will of single individuals, human crowds, from dilute to dense, invariably display a remarkable set of universal features and statistically reproducible behaviors. Here, we review ideas and recent progress in employing the language and tools from physics to develop a deeper understanding about the dynamics of pedestrians. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this paper, a classification of swimming in complex fluids is proposed by comparing the length and timescales of a swimmer with those of nearby obstacles, interpreted broadly, extending from rigid or soft confining boundaries to molecules that confer the bulk fluid with complex stresses.
Abstract: We review the literature on swimming in complex fluids. A classification is proposed by comparing the length and timescales of a swimmer with those of nearby obstacles, interpreted broadly, extending from rigid or soft confining boundaries to molecules that confer the bulk fluid with complex stresses. A third dimension in the classification is the concentration of swimmers, which incorporates fluids whose complexity arises purely by the collective motion of swimming organisms. For each of the eight system classes that we identify, we provide a background and describe modern research findings. Although some classes have seen a great deal of attention for decades, others remain uncharted waters still open and awaiting exploration. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this paper , the authors review the differences and commonalities between the physics of these two regimes and survey the literature for the numbers that allow us to place a material within either of them.
Abstract: Cytoskeletal networks are the main actuators of cellular mechanics, and a foundational example for active matter physics. In cytoskeletal networks, motion is generated on small scales by filaments that push and pull on each other via molecular-scale motors. These local actuations give rise to large-scale stresses and motion. To understand how microscopic processes can give rise to self-organized behavior on larger scales it is important to consider what mechanisms mediate long-ranged mechanical interactions in the systems. Two scenarios have been considered in the recent literature. The first scenario is systems that are relatively sparse, in which most of the large-scale momentum transfer is mediated by the solvent in which cytoskeletal filaments are suspended. The second scenario is systems in which filaments are coupled via cross-link molecules throughout. Here, we review the differences and commonalities between the physics of these two regimes. We also survey the literature for the numbers that allow us to place a material within either of these two classes.

Journal ArticleDOI
TL;DR: In this article , a review of data-driven photocatalyst discovery is presented, emphasizing the methods and techniques developed in the last few years to determine the photoelectrochemical stability of photocatalysts, leading to the discovery of robust and durable under operational conditions.
Abstract: The solar–to–chemical energy conversion of Earth-abundant resources like water or greenhouse gas pollutants like CO2 promises an alternate energy source that is clean, renewable, and environmentally friendly. The eventual large-scale application of such photo-based energy conversion devices can be realized through the discovery of novel photocatalytic materials that are efficient, selective, and robust. In the past decade, the Materials Genome Initiative has led to a major leap in the development of materials databases, both computational and experimental. Hundreds of photocatalysts have recently been discovered for various chemical reactions, such as water splitting and carbon dioxide reduction, employing these databases and/or data informatics, machine learning, and high-throughput computational and experimental methods. In this article, we review these data-driven photocatalyst discoveries, emphasizing the methods and techniques developed in the last few years to determine the (photo)electrochemical stability of photocatalysts, leading to the discovery of photocatalysts that remain robust and durable under operational conditions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.