scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 1985"


Journal ArticleDOI
TL;DR: Results from parallel studies with spread, membrane filter, and pour plate procedures showed that R2A medium yielded significantly higher bacterial counts than did plate count agar, and the magnitude of the count was inversely proportional to the incubation temperature.
Abstract: Plate count agar is presently the recommended medium for the standard bacterial plate count (35 degrees C, 48-h incubation) of water and wastewater. However, plate count agar does not permit the growth of many bacteria that may be present in treated potable water supplies. A new medium was developed for use in heterotrophic plate count analyses and for subculture of bacteria isolated from potable water samples. The new medium, designated R2A, contains 0.5 g of yeast extract, 0.5 g of Difco Proteose Peptone no. 3 (Difco Laboratories), 0.5 g of Casamino Acids (Difco), 0.5 g of glucose, 0.5 g of soluble starch, 0.3 g of K2HPO4, 0.05 g of MgSO4 X 7H2O, 0.3 g of sodium pyruvate, and 15 g of agar per liter of laboratory quality water. Adjust the pH to 7.2 with crystalline K2HPO4 or KH2PO4 and sterilize at 121 degrees C for 15 min. Results from parallel studies with spread, membrane filter, and pour plate procedures showed that R2A medium yielded significantly higher bacterial counts than did plate count agar. Studies of the effect of incubation temperature showed that the magnitude of the count was inversely proportional to the incubation temperature. Longer incubation time, up to 14 days, yielded higher counts and increased detection of pigmented bacteria. Maximal bacterial counts were obtained after incubation at 20 degrees C for 14 days. As a tool to monitor heterotrophic bacterial populations in water treatment processes and in treated distribution water, R2A spread or membrane filter plates incubated at 28 degrees C for 5 to 7 days is recommended.(ABSTRACT TRUNCATED AT 250 WORDS)

2,037 citations


Journal ArticleDOI
TL;DR: In this article, the authors applied substrate-electron acceptor combinations and specific metabolic inhibitors to anoxic saltmarsh sediment spiked with mercuric ions (Hg2+) in an effort to identify, by a direct approach, the microorganisms responsible for the synthesis of hazardous monomethylmercury.
Abstract: Substrate-electron acceptor combinations and specific metabolic inhibitors were applied to anoxic saltmarsh sediment spiked with mercuric ions (Hg2+) in an effort to identify, by a direct approach, the microorganisms responsible for the synthesis of hazardous monomethylmercury. 2-Bromoethane sulfonate (30 mM), a specific inhibitor of methanogens, increased monomethylmercury synthesis, whereas sodium molybdate (20 mM), a specific inhibitor of sulfate reducers, decreased Hg2+ methylation by more than 95%. Anaerobic enrichment and isolation procedures yielded a Desulfovibrio desulfuricans culture that vigorously methylated Hg2+ in culture solution and also in samples of presterilized sediment. The Hg2+ methylation activity of sulfate reducers is fully expressed only when sulfate is limiting and fermentable organic substrates are available. To date, sulfate reducers have not been suspected of Hg2+ methylation. Identification of these bacteria as the principal methylators of Hg2+ in anoxic sediments raises questions about the environmental relevance of previous pure culture-based methylation work.

1,195 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.
Abstract: Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems.

1,005 citations


Journal ArticleDOI
TL;DR: In this article, the authors found that Lactobacillus acidophilus is able to grow well in the presence of bile and to assimilate cholesterol from a laboratory growth medium.
Abstract: Considerable variation was found among strains of Lactobacillus acidophilus isolated from the fecal flora of pigs with regard to the ability to grow well in the presence of bile and to assimilate cholesterol from a laboratory growth medium. The uptake of cholesterol occurred only when the culture(s) was growing in the presence of bile under anaerobic conditions. Consumption of L. acidophilus RP32, which was selected for its ability to grow well in the presence of bile and to assimilate cholesterol from the laboratory medium, significantly inhibited increases in serum cholesterol levels of pigs (P less than 0.05) fed a high-cholesterol diet. Consumption of L. acidophilus P47, which was selected for its ability to grow in the presence of bile and lack of ability to remove cholesterol from the growth medium, failed to have a similar effect. This indicates that certain strains of L. acidophilus act directly on cholesterol in the gastrointestinal tract, and thus may be beneficial in reducing serum cholesterol levels.

646 citations


Journal ArticleDOI
TL;DR: It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide.
Abstract: A series of 15N isotope tracer experiments showed that Nitrosomonas europaea produces nitrous oxide only under oxygen-limiting conditions and that the labeled N from nitrite, but not nitrate, is incorporated into nitrous oxide, indicating the presence of the “denitrifying enzyme” nitrite reductase. A kinetic analysis of the m/z 44, 45, and 46 nitrous oxide produced by washed cell suspensions of N. europaea when incubated with 4 mM ammonium (99% 14N) and 0.4 mM nitrite (99% 15N) was performed. No labeled nitrite was reduced to ammonium. All labeled material added was accounted for as either nitrite or nitrous oxide. The hypothesis that nitrous oxide is produced directly from nitrification was rejected since (i) it does not allow for the large amounts of double-labeled (m/z 46) nitrous oxide observed; (ii) the observed patterns of m/z 44, 45, and 46 nitrous oxide were completely consistent with a kinetic analysis based on denitrification as the sole mechanism of nitrous oxide production but not with a kinetic analysis based on both mechanisms; (iii) the asymptotic ratio of m/z 45 to m/z 46 nitrous oxide was consistent with denitrification kinetics but inconsistent with nitrification kinetics, which predicted no limit to m/z 45 production. It is concluded that N. europaea is a denitrifier which, under conditions of oxygen stress, uses nitrite as a terminal electron acceptor and produces nitrous oxide.

632 citations


Journal ArticleDOI
TL;DR: Cylindrospermopsis raciborskii, a tropical blooming species of cyanobacterium (blue-green alga), was isolated from the domestic water supply reservoir on Palm Island, a continental island off the tropical northeast coast of Australia, and shown to be severely hepatotoxic for mice.
Abstract: Cylindrospermopsis raciborskii, a tropical blooming species of cyanobacterium (blue-green alga), was isolated from the domestic water supply reservoir on Palm Island, a continental island off the tropical northeast coast of Australia. This species, not previously known to be toxic, was shown to be severely hepatotoxic for mice. The 50% lethal dose at 24 h after injection was found to be 64 +/- 5 mg of freeze-dried culture per kg of mouse. The principal lesion produced was centrilobular to massive hepatocyte necrosis, but various degrees of injury were also seen in the kidneys, adrenal glands, lungs, and intestine. The possible implication of this finding in relation to an incident of hepatoenteritis in humans living on the island is discussed.

573 citations


Journal ArticleDOI
TL;DR: In this paper, the results of a column study confirm that trichloroethylene (PCE) can be transformed by reductive dehalogenation to TCE, dichloromethane (DHE), and vinyl chloride (VC) under anaerobic conditions.
Abstract: Tetrachloroethylene (PCE) and trichloroethylene (TCE), common industrial solvents, are among the most frequent contaminants found in groundwater supplies. Due to the potential toxicity and carcinogenicity of chlorinated ethylenes, knowledge about their transformation potential is important in evaluating their environmental fate. The results of this study confirm that PCE can be transformed by reductive dehalogenation to TCE, dichloroethylene, and vinyl chloride (VC) under anaerobic conditions. In addition, [14C]PCE was at least partially mineralized to CO2. Mineralization of 24% of the PCE occurred in a continuous-flow fixed-film methanogenic column with a liquid detention time of 4 days. TCE was the major intermediate formed, but traces of dichloroethylene isomers and VC were also found. In other column studies under a different set of methanogenic conditions, nearly quantitative conversion of PCE to VC was found. These studies clearly demonstrate that TCE and VC are major intermediates in PCE biotransformation under anaerobic conditions and suggest that potential exists for the complete mineralization of PCE to CO2 in soil and aquifer systems and in biological treatment processes.

565 citations


Journal ArticleDOI
TL;DR: Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as
Abstract: Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

529 citations


Journal ArticleDOI
TL;DR: Based on direct measurements of bacterial cell carbon content, cell number, and biovolume, I have derived an average conversion factor of 5.6 x 10 g of C mum, which is three to 6.6 times higher than most theoretically derived factors currently in use.
Abstract: The biomass of bacterial populations in aquatic ecosystems is often estimated by measuring bacterial biovolume and converting this into biomass in terms of carbon. A reliable conversion factor relating the measured bacterial biovolume to bacterial carbon content is essential for this approach. Based on direct measurements of bacterial cell carbon content, cell number, and biovolume, I have derived an average conversion factor of 5.6 × 10−13 g of C μm−3. This conversion factor is 3.4 to 6.6 times higher than most theoretically derived factors currently in use. Both bacterial biomass and bacterial production in aquatic ecosystems may thus have been seriously underestimated.

523 citations


Journal ArticleDOI
TL;DR: Three mathematical models proposed to describe the effects of sorption of both bacteria and the herbicide (2,4-dichlorophenoxy)acetic acid on the biological degradation rates of 2, 4-D in soils indicated that sorbed 2,3-D is completely protected from degradation and that both sorbed and solution bacteria are capable of degrading 2,4,D in solution.
Abstract: Three mathematical models were proposed to describe the effects of sorption of both bacteria and the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D) on the biological degradation rates of 2,4-D in soils. Model 1 assumed that sorbed 2,4-D is not degraded, that only bacteria in solution are capable of degrading 2,4-D in solution, and that sorbed bacteria are not capable of degrading either sorbed or solution 2,4-D. Model 2 stated that only bacteria in the solution phase degrade 2,4-D in solution and that only sorbed bacteria degrade sorbed 2,4-D. Model 3 proposed that sorbed 2,4-D is completely protected from degradation and that both sorbed and solution bacteria are capable of degrading 2,4-D in solution. These models were tested by a series of controlled laboratory experiments. Models 1 and 2 did not describe the data satisfactorily and were rejected. Model 3 described the experimental results quite well, indicating that sorbed 2,4-D was completely protected from biological degradation and that sorbed- and solution-phase bacteria degraded solution-phase 2,4-D with almost equal efficiencies.

460 citations


Journal ArticleDOI
TL;DR: Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured and indicated significant isotopic heterogeneity in intracellular components.
Abstract: Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

Journal ArticleDOI
TL;DR: Trichloroethylene was shown to degrade aerobically to carbon dioxide in an unsaturated soil column exposed to a mixture of natural gas in air (0.6%).
Abstract: Trichloroethylene was shown to degrade aerobically to carbon dioxide in an unsaturated soil column exposed to a mixture of natural gas in air (0.6%).

Journal ArticleDOI
TL;DR: Temperature was the only variable significantly correlated with the decay rates of all three viruses, an indication that MS-2 coliphage might be used as a model of animal virus survival in groundwater.
Abstract: More than 50% of the outbreaks of waterborne disease in the United States are due to the consumption of contaminated groundwater. An estimated 65% of the cases in these outbreaks are caused by enteric viruses. Little, however, is known about the persistence of viruses in groundwater. The purpose of this study was to determine whether measurable chemical and physical factors correlate with virus survival in groundwater. Groundwater samples were obtained from 11 sites throughout the United States. Water temperature was measured at the time of collection. Several physical and chemical characteristics, including pH, nitrates, turbidity, and hardness, were determined for each sample. Separate water samples were inoculated with each of three viruses (poliovirus 1, echovirus 1, and MS-2 coliphage) and incubated at the in situ groundwater temperature; selected samples were also incubated at other temperatures. Assays were performed at predetermined intervals over a 30-day period to determine the number of infective viruses remaining. Multiple regression analysis revealed that temperature was the only variable significantly correlated with the decay rates of all three viruses. No significant differences were found among the decay rates of the three viruses, an indication that MS-2 coliphage might be used as a model of animal virus survival in groundwater.

Journal ArticleDOI
TL;DR: The bacterium destroyed PNP in sterile sewage and enhanced PNP mineralization in nonsterile sewage, and grew in sterile DCP-amended sewage, although not causing appreciable mineralization of the test compound.
Abstract: Pseudomonas strains capable of mineralizing 2,4-dichlorophenol (DCP) and p-nitrophenol (PNP) in culture media were isolated from soil. One DCP-metabolizing strain mineralized 1.0 and 10 micrograms of DCP but not 2.0 to 300 ng/ml in culture. When added to lake water containing 10 micrograms of DCP per ml, the bacterium did not mineralize the compound, and only after 6 days did it cause the degradation of 1.0 microgram of DCP per ml. The organism did not grow or metabolize DCP when inoculated into sterile lake water, but it multiplied in sterile lake water amended with glucose or with DCP and supplemental nutrients. Its population density declined and DCP was not mineralized when the pseudomonad was added to nonsterile sewage, but the bacterium grew in sterile DCP-amended sewage, although not causing appreciable mineralization of the test compound. Addition of the bacterium to nonsterile soil did not result in the mineralization of 10 micrograms of DCP per g, although mineralization was evident if the inoculum was added to sterile soil. A second DCP-utilizing pseudomonad failed to mineralize DCP when added to the surface of sterile soil, although activity was evident if the inoculum was mixed with the soil. A pseudomonad able to mineralize 5.0 micrograms of PNP per ml in culture did not mineralize the compound in sterile or nonsterile lake water. The bacterium destroyed PNP in sterile sewage and enhanced PNP mineralization in nonsterile sewage. When added to the surface of sterile soil, the bacterium mineralized little of the PNP present at 5.0 micrograms/g, but it was active if mixed well with the sterile soil.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal ArticleDOI
TL;DR: This article corrects the article on p. 674 in vol.
Abstract: A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichloroethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.

Journal ArticleDOI
TL;DR: Effects of light intensity, temperature, and nutrients on the toxicity of Microcystis aeruginosa were investigated, using a toxic strain which kills mice.
Abstract: Effects of light intensity, temperature, and nutrients on the toxicity of Microcystis aeruginosa were investigated, using a toxic strain which kills mice A marked change in toxicity was observed in the light intensity experiment, and slight changes were observed to be caused by temperature and phosphorus deficiency

Journal ArticleDOI
TL;DR: Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control, and suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH.
Abstract: The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes.

Journal ArticleDOI
TL;DR: In this article, a 4.5-liter reactor placed in an incubator maintained at representative temperatures was used to continuously thermophilic composting with a mixture of dried table scraps and shredded newspaper wetted to 55% moisture.
Abstract: Continuously thermophilic composting was examined with a 4.5-liter reactor placed in an incubator maintained at representative temperatures. Feed was a mixture of dried table scraps and shredded newspaper wetted to 55% moisture. One run at 49 degrees C (run A) employed a 1:4 feed-to-compost ratio, while the other runs used a 10:1 ratio and were incubated at 50, 55, 60, or 65 degrees C. Due to self-heating, internal temperatures of the composting mass were 0 to 7 degrees C hotter than the incubator. Two full-scale composting plants (at Altoona, Pa., and Leicester, England) were also examined. Plate counts per gram (dry weight) on Trypticase soy broth (BBL Microbiology Systems) with 2% agar ranged from 0.7 X 10(9) to 5.3 X 10(9) for laboratory composting and 0.02 X 10(9) to 7.4 X 10(9) for field composting. Fifteen taxa were isolated, including 10 of genus Bacillus, which dominated all samples except that from run A. Species diversity decreased markedly in laboratory composting at 60 degrees C and above, but was similar for the three runs incubated at 49, 50, and 55 degrees C. The maximum desirable composting temperature based on species diversity is thus 60 degrees C, the same as that previously recommended based on measures of the rate of decomposition.

Journal ArticleDOI
TL;DR: The cell size distribution and the relative frequency of colony-forming cells were similar in the soil homogenate, the supernatants after blending-centrifugation, and the purified bacterial fraction, while the purity was positively correlated with the clay content of the soils.
Abstract: Bacteria were released and separated from soil by a simple blending-centrifugation procedure. The percent yield of bacterial cells (microscopic counts) in the supernatants varied over a wide range depending on the soil type. The superantants contained large amounts of noncellular organic material and clay particles. Further purification of the bacterial cells was obtained by centrifugation in density gradients, whereby the clay particles and part of the organic materials sedimented. A large proportion of the bacteria also sedimented through the density gradient, showing that they had a buoyant density above 1.2 g/ml. Attachment to clay minerals and humic material may account for this apparently high buoyant density. The percent yield of cells was negatively correlated with the clay content of the soils, whereas the purity was positively correlated with it. The cell size distribution and the relative frequency of colony-forming cells were similar in the soil homogenate, the supernatants after blending-centrifugation, and the purified bacterial fraction. In purified bacterial fraction from a clay loam, the microscopically measured biomass could account for 20 to 25% of the total C and 30 to 40% of the total N as cellular C and N. The amount of cellular C and N may be higher, however, owing to an underestimation of the cell diameter during fluorescence. A part of the contamination could be ascribed to extracellular structures as well as partly decayed cells, which were not revealed by fluorescence microscopy.

Journal ArticleDOI
TL;DR: In this paper, a medium consisting of phenol red agar base (Difco Laboratories), soluble starch (10 g/liter), and ampicillin (10 mg/liter) was used for food-borne A. hydrophila detection.
Abstract: Interest in Aeromonas hydrophila as a food-borne and human pathogen is increasing. Isolation media from the clinical laboratory were evaluated for food use and either did not give quantitative recovery of A. hydrophila or did not permit ready differentiation of A. hydrophila from the background microflora. A new medium was developed which permitted quantitative recovery of A. hydrophila from foods. The medium consisted of phenol red agar base (Difco Laboratories), soluble starch (10 g/liter), and ampicillin (10 mg/liter). All foods surveyed contained A. hydrophila. Foods sampled included red meats, chicken, raw milk, and seafood (fish, shrimp, scallops, crab, and oysters). The count of A. hydrophila at the time of purchase ranged from 1 × 102/g (lower limit of detection) to 5 × 105/g. In most instances, the count of A. hydrophila increased during 1 week of storage at 5°C. The starch-ampicillin agar developed permitted rapid quantitative recovery of A. hydrophila from foods in the presence of very large numbers of competing microflora.

Journal ArticleDOI
TL;DR: The results of this study suggest that the microbial population of these two shallow aquifers is dominated by aerobic, nutritionally versatile bacteria that can subsist on low concentrations of organic compounds without forming specialized resting cells.
Abstract: The bacterial microflora of two shallow aquifers (saturated subsurface zones) in Oklahoma was characterized by direct observation with light and electron microscopy, by plating, and by examination of colony morphology and distribution. Isolated bacterial strains were also examined. Total cell counts varied only slightly (2.9 x 10 to 9.8 x 10 g [dry wt]) from sample to sample, whereas colony counts varied widely (6.3 x 10 to 6.5 x 10 CFU g [dry wt]). Colony counts on nutritionally rich media were lower than on low-nutrient media, especially in samples from the saturated zone. The variety of colony types growing on nutritionally rich media decreased with increasing depth and saturation. Colony counts of anaerobic bacteria also decreased with depth but were at least 100-fold lower than aerobic counts on most media. Cell morphologies of bacteria grown aerobically on plates included short rods, cocci, and actinomycete-like forms. Direct light microscopic observation of sediments revealed short, rod-shaped, and coccoid bacterial cells; endospores, actinomycete spores, and eucaryotic forms were not observed by light microscopy. Electron microscopic observation of bacteria released from the samples revealed that 85 to 90% of them were coccoid, gram-positive, Arthrobacter-like organisms, some of which were dividing or contained completed division septa; other types of gram-positive and gram-negative bacteria were present in lower numbers. Isolated bacterial strains were able to grow on both nutritionally rich and low-nutrient media. A higher proportion of gram-negative organisms was isolated than gram-positive organisms. Most of the isolates were capable of storing polyphosphate, poly-beta-hydroxybutyrate, or polysaccharide. The results of this study suggest that the microbial population of these two shallow aquifers is dominated by aerobic, nutritionally versatile bacteria that can subsist on low concentrations of organic compounds without forming specialized resting cells. Other types of microorganisms, such as facultatively anaerobic bacteria and microeucaryotes, may also be present, but they represent only a small fraction of the microflora.

Journal ArticleDOI
TL;DR: A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases) than previously thought.
Abstract: Bacteria able to mineralize 100 to 200 ppm of pentachlorophenol (PCP) were isolated by selective enrichment from PCP-contaminated soils from three geographic areas of Minnesota. Although differing somewhat in their responses to various biochemical and biophysical tests, all strains were assigned to the genus Flavobacterium. Five representative strains were examined in detail. All strains metabolized PCP as a sole source of carbon and energy; 73 to 83% of all carbon in the form of [U-14C]PCP was returned as 14CO2, with full liberation of chlorine as chloride. A comparison between strains in their ability to metabolize PCP showed some strains to be more efficient than others. Guanine-plus-cytosine contents of DNA ranged from 58.8 to 63.8%, and DNA/DNA hybridization studies with total DNA digests suggested substantial genetic homology between strains. All strains were shown to possess an 80- to 100-kilobase plasmid, and evidence suggested the presence of a larger plasmid (greater than 200 kilobases).

Journal ArticleDOI
TL;DR: New media (S1 and S2) were formulated that provide a high degree of selectivity and detection of fluorescent pseudomonads on initial plating that consistently recovered high percentages of fluorescent phenotypes in soils in which fluorescent Pseudomonads represent a small proportion of the total population.
Abstract: New media (S1 and S2) were formulated that provide a high degree of selectivity and detection of fluorescent pseudomonads on initial plating. The selectivity of the S-type media was based on a detergent, sodium lauroyl sarcosine, and an antibiotic, trimethoprim. A total of five soils from different geographical locations and one sewage sludge sample were examined. On S1 medium, isolates from two soils with low fluorescent pseudomonad populations exhibited a high frequency of arginine dihydrolase (78%) and oxidase-positive (95%) phenotypes, but no fermentative isolates were recovered. Medium S2 was more defined and selective than S1, but lower numbers of fluorescent pseudomonads were recovered on S2. In soils in which fluorescent pseudomonads represent a small proportion of the total population, S1 medium consistently recovered high percentages of fluorescent phenotypes (82.5%). Images

Journal ArticleDOI
TL;DR: Norwalk virus in water was found to be more resistant to chlorine inactivation than poliovirus type 1 (LSc2Ab), human rotav virus (Wa), simian rotavirus (SA11), or f2 bacteriophage.
Abstract: Norwalk virus in water was found to be more resistant to chlorine inactivation than poliovirus type 1 (LSc2Ab), human rotavirus (Wa), simian rotavirus (SA11), or f2 bacteriophage. A 3.75 mg/liter dose of chlorine was found to be effective against other viruses but failed to inactivate Norwalk virus. The Norwalk virus inoculum remained infectious for five of eight volunteers, despite the initial presence of free residual chlorine. Infectivity in volunteers was demonstrated by seroconversion to Norwalk virus. Fourteen of 16 subjects receiving untreated inoculum seroconverted to Norwalk virus. Illness was produced in four of the eight volunteers and in 11 of 16 control subjects. A similar Norwalk virus inoculum treated with a 10 mg/liter dose of chlorine produced illness in only one and failed to induce seroconversion in any of eight volunteers. Free chlorine (5 to 6 mg/liter) was measured in the reaction vessel after a 30-minute contact period. Norwalk virus appears to be very resistant to chlorine which may explain its importance in outbreaks of waterborne disease.

Journal ArticleDOI
TL;DR: The regulation of an H(2)O(2)-dependent ligninolytic activity was examined in the wood decay fungus Phanerochaete chrysosporium and it was concluded that lignin degradation (lignin --> CO(2)) by this organism is regulated in part at the level of the lign inase, which is apparently inducible by its substrates or their degradation products.
Abstract: The regulation of an H2O2-dependent ligninolytic activity was examined in the wood decay fungus Phanerochaete chrysosporium. The ligninase appears in cultures upon limitation for nitrogen or carbohydrate and is suppressed by excess nutrients, by cycloheximide, or by culture agitation. Activity is increased by idiophasic exposure of cultures to 100% O2. Elevated levels of ligninase and, in some cases, of extracellular H2O2 production are detected after brief incubation of cultures with lignins or lignin substructure models, with the secondary metabolite veratryl alcohol, or with other related compounds. It is concluded that lignin degradation (lignin → CO2) by this organism is regulated in part at the level of the ligninase, which is apparently inducible by its substrates or their degradation products.

Journal ArticleDOI
TL;DR: It is suggested that bacteriophages do not affect the number or activity of bacteria in environments where the density of the host species is below the host cell threshold of about 10(4) CFU/ml.
Abstract: Bacteriophage 80 alpha did not increase in number in cultures containing less than about 1.0 X 10(4) to 1.5 X 10(4) CFU of Staphylococcus aureus per ml, but bacteriophage replication did occur when the number of bacteria exceeded this density, either initially or as a result of host cell multiplication. The minimum density of an asporogenous strain of Bacillus subtilis required for an increase in the number of bacteriophage SP beta cI was about 3 X 10(4) CFU/ml. The threshold density of Escherichia coli for the multiplication of bacteriophage T4 was about 7 X 10(3) CFU/ml. In the presence of montmorillonite, bacteriophage T4 did not increase in number until the E. coli population exceeded 10(4) CFU/ml. The mineralization of glucose was not affected in E. coli cultures inoculated with a low number of bacteriophage T4, but it could not be detected in cultures inoculated with a large number of phage. The numbers of bacteriophage T4 and a bacteriophage that lyses Pseudomonas putida declined rapidly after being added to lake water or sewage. We suggest that bacteriophages do not affect the number or activity of bacteria in environments where the density of the host species is below the host cell threshold of about 10(4) CFU/ml.

Journal ArticleDOI
TL;DR: Liposan effected and stabilized oil-in-water emulsions with a variety of commercial vegetable oils and was compared to those of a number of commercial emulsifiers and stabilizers.
Abstract: The inducible water-soluble bioemulsifier liposan (M. C. Cirigliano and G. M. Carman, Appl. Environ. Microbiol. 48:747-750, 1984) was purified from the yeast Candida lipolytica. The purification procedure included repeated solvent extractions of a concentrated culture filtrate and Affi-Gel concanavalin A affinity chromatography. The procedure yielded a preparation containing a major band (M(r) = 27,600) which stained for protein and carbohydrate upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Liposan is composed of approximately 83% carbohydrate and 17% protein. Acid and enzymatic digestions of the emulsifier revealed that the carbohydrate portion is a heteropolysaccharide consisting of glucose, galactose, galactosamine, and galacturonic acid. Liposan effected and stabilized oil-in-water emulsions with a variety of commercial vegetable oils. Emulsification and stabilization properties of liposan were compared to those of a number of commercial emulsifiers and stabilizers.

Journal ArticleDOI
TL;DR: The results are in general agreement with the results reported previously and are used to support the conclusion that most of the H(2)-dependent methanogenesis in these ecosystems occurs as a consequence of direct interspecies H( 2) transfer between juxtapositioned microbial associations within flocs or consortia.
Abstract: We developed new techniques to measure dissolved H2 and H2 consumption kinetics in anoxic ecosystems that were not dependent on headspace measurements or gas transfer-limited experimentation. These H2 metabolism parameters were then compared with measured methane production rates, and estimates of H2 production and interspecies H2 transfer were made. The H2 pool sizes were 205 and 31 nM in sewage sludge from an anaerobic digestor and in sediments (24 m) from Lake Mendota, respectively. The H2 turnover rate constants, as determined by using in situ pool sizes and temperatures, were 103 and 31 h−1 for sludge and sediment, respectively. The observed H2 turnover rate accounted for only 5 to 6% of the expected H2-CO2-dependent methanogenesis in these ecosystems. Our results are in general agreement with the results reported previously and are used to support the conclusion that most of the H2-dependent methanogenesis in these ecosystems occurs as a consequence of direct interspecies H2 transfer between juxtapositioned microbial associations within flocs or consortia.

Journal ArticleDOI
TL;DR: Results show that addition of Tween 80, Tween 20, or 3-[(3-colamidopropyl)dimethylammonio]1-propanesulfonate to the cultures permits development of ligninase activity comparable to that routinely obtained in stationary cultures.
Abstract: Research on the extracellular hemeprotein ligninases of Phanerochaete chrysosporium has been hampered by the necessity to produce them in stationary culture. This investigation examined the effects of detergents on development of ligninase activity in agitated submerged cultures. Results show that addition of Tween 80, Tween 20, or 3-[(3-colamidopropyl)dimethylammonio]1-propanesulfonate to the cultures permits development of ligninase activity comparable to that routinely obtained in stationary cultures. The detergent-amended cultures express the entire ligninolytic system, assayed as the complete oxidation of [14C]lignin to 14CO2. The detergent effect is evidently not merely in facilitating release of extant enzyme. Development of ligninolytic activity in the agitated cultures, as in stationary cultures, is idiophasic. Ion-exchange fast protein-liquid chromatography indicated that the heme protein profiles in agitated and stationary cultures are very similar. These findings should make it possible to scale up production of ligninolytic enzymes in stirred tank fermentors.

Journal ArticleDOI
TL;DR: The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp.
Abstract: The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp, was examined with Trypticase soy broth (BBL Microbiology Systems) with 2% agar as the initial plating medium Five 45-liter laboratory units at 49 to 69 degrees C were fed a mixture of dried table scraps and shredded newspaper The composting plants treating refuse at Altoona, Pa, and refuse-sludge at Leicester, England, were also sampled Of 652 randomly picked colonies, 87% were identified as Bacillus spp Other isolates included two genera of unidentified nonsporeforming bacteria (one of gram-negative small rods and the other of gram-variable coccobacilli), the actinomycetes Streptomyces spp and Thermoactinomyces sp, and the fungus Aspergillus fumigatus Among the Bacillus isolates, the following, in order of decreasing frequency, were observed: B circulans complex, B stearothermophilus, B coagulans types A and B, B licheniformis, B brevis, B sphaericus, Bacillus spp types i and ii, and B subtilis About 15% of the Bacillus isolates could be assigned to species only by allowing for greater variability in one or more characteristics than has been reported by other authors for their strains In particular, growth at higher temperatures than previously reported was found for strains of several species A small number of Bacillus isolates (less than 2%) could not be assigned to any recognized species