scispace - formally typeset
Search or ask a question

Showing papers in "Archaea in 2017"


Journal ArticleDOI
05 Jan 2017-Archaea
TL;DR: In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea.
Abstract: Anaerobic oxidation of methane (AOM) is catalyzed by anaerobic methane-oxidizing archaea (ANME) via a reverse and modified methanogenesis pathway. Methanogens can also reverse the methanogenesis pathway to oxidize methane, but only during net methane production (i.e., “trace methane oxidation”). In turn, ANME can produce methane, but only during net methane oxidation (i.e., enzymatic back flux). Net AOM is exergonic when coupled to an external electron acceptor such as sulfate (ANME-1, ANME-2abc, and ANME-3), nitrate (ANME-2d), or metal (oxides). In this review, the reversibility of the methanogenesis pathway and essential differences between ANME and methanogens are described by combining published information with domain based (meta)genome comparison of archaeal methanotrophs and selected archaea. These differences include abundances and special structure of methyl coenzyme M reductase and of multiheme cytochromes and the presence of menaquinones or methanophenazines. ANME-2a and ANME-2d can use electron acceptors other than sulfate or nitrate for AOM, respectively. Environmental studies suggest that ANME-2d are also involved in sulfate-dependent AOM. ANME-1 seem to use a different mechanism for disposal of electrons and possibly are less versatile in electron acceptors use than ANME-2. Future research will shed light on the molecular basis of reversal of the methanogenic pathway and electron transfer in different ANME types.

245 citations


Journal ArticleDOI
02 Nov 2017-Archaea
TL;DR: It is shown that Methanomassiliicoccus luminyensis is adapted to habitats that provide methanol + H2 as substrates, and that the organism has a doubling time of 1.8 d with metanol’s+‬H2 and a growth yield of 2.4 g dry weight/mol CH4.
Abstract: DNA sequence analysis of the human gut revealed the presence a seventh order of methanogens referred to as Methanomassiliicoccales. Methanomassiliicoccus luminyensis is the only member of this order that grows in pure culture. Here, we show that the organism has a doubling time of 1.8 d with methanol + H2 and a growth yield of 2.4 g dry weight/mol CH4. M. luminyensis also uses methylamines + H2 (monomethylamine, dimethylamine, and trimethylamine) with doubling times of 2.1–2.3 d. Similar cell yields were obtained with equimolar concentrations of methanol and methylamines with respect to their methyl group contents. The transcript levels of genes encoding proteins involved in substrate utilization indicated increased amounts of mRNA from the mtaBC2 gene cluster in methanol-grown cells. When methylamines were used as substrates, mRNA of the mtb/mtt operon and of the mtmBC1 cluster were found in high abundance. The transcript level of mtaC2 was almost identical in methanol- and methylamine-grown cells, indicating that genes for methanol utilization were constitutively expressed in high amounts. The same observation was made with resting cells where methanol always yielded the highest CH4 production rate independently from the growth substrate. Hence, M. luminyensis is adapted to habitats that provide methanol + H2 as substrates.

55 citations


Journal ArticleDOI
19 Nov 2017-Archaea
TL;DR: Glycylglycine is an inexpensive and nontoxic buffer suitable for growth of Methanococcus maripaludis and Methanothermococcus okinawensis and it allows cultivation of liter scale cultures without expensive fermentation equipment.
Abstract: Many hydrogenotrophic methanogens use either H2 or formate as the major electron donor to reduce CO2 for methane production. The conventional cultivation of these organisms uses H2 and CO2 as the substrate with frequent replenishment of gas during growth. H2 is explosive and requires an expensive gassing system to handle safely. Formate is as an ideal alternative substrate from the standpoints of both economy and safety but leads to large changes in the culture pH during growth. Here, we report that glycylglycine is an inexpensive and nontoxic buffer suitable for growth of Methanococcus maripaludis and Methanothermococcus okinawensis. This cultivation system is suitable for growth on liquid as well as solid medium in serum bottles. Moreover, it allows cultivation of liter scale cultures without expensive fermentation equipment. This formate cultivation system provides an inexpensive and flexible alternative for the growth of formate-utilizing, hydrogenotrophic methanogens.

27 citations


Journal ArticleDOI
04 Jan 2017-Archaea
TL;DR: It is shown how the metabolic models can be used to study the evolution of metabolism in archaea and the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling.
Abstract: Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria.

25 citations


Journal ArticleDOI
23 Jan 2017-Archaea
TL;DR: Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).
Abstract: Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).

22 citations


Journal ArticleDOI
13 Jun 2017-Archaea
TL;DR: The results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.
Abstract: Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I) Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea). Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.

22 citations


Journal ArticleDOI
Yang Lu1, Hua Lu1, Shiwei Wang1, Jing Han1, Hua Xiang1, Cheng Jin1 
28 May 2017-Archaea
TL;DR: The results suggest that biosynthesis of the acidic EPS might act as an adaptable mechanism to protect the cells against harsh environments.
Abstract: A 11 × 106 Da acidic exopolysaccharide (EPS) was purified from an extremely halophilic archaeon Haloarcula hispanica ATCC33960 with a production of 30 mg L-1 when grown in AS-168 medium, which mainly composed of mannose and galactose with a small amount of glucose in a molar ratio of 559 : 432 : 09 Two glycosyltransferase genes (HAH_1662 and HAH_1667) were identified to be responsible for synthesis of the acidic EPS Deletion of either HAH_1662 or HAH_1667 led to loss of the acidic EPS The mutants displayed a different cell surface morphology, retarded growth in low salty environment, an increased adhesion, and swimming ability Our results suggest that biosynthesis of the acidic EPS might act as an adaptable mechanism to protect the cells against harsh environments

16 citations


Journal ArticleDOI
31 Oct 2017-Archaea
TL;DR: The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius and develops reliable gene knockout via double crossover using short homologous arms and with one-step PCR.
Abstract: Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA) by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER). In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr-) and arginine decarboxylase- (argD-) deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.

13 citations


Journal ArticleDOI
28 May 2017-Archaea
TL;DR: The presence of ALP-encoding genes in the genome of this non-host-associated methanogen strongly suggests that target surfaces for ALPs other than host tissues also need to be considered as potential interaction partners.
Abstract: Methanobrevibacter arboriphilus strain DH1 is an autotrophic methanogen that was isolated from the wetwood of methane-emitting trees This species has been of considerable interest for its unusual oxygen tolerance and has been studied as a model organism for more than four decades Strain DH1 is closely related to other host-associated Methanobrevibacter species from intestinal tracts of animals and the rumen, making this strain an interesting candidate for comparative analysis to identify factors important for colonizing intestinal environments Here, the genome sequence of M arboriphilus strain DH1 is reported The draft genome is composed of 2445031 bp with an average GC content of 2544% and predicted to harbour 1964 protein-encoding genes Among the predicted genes, there are also more than 50 putative genes for the so-called adhesin-like proteins (ALPs) The presence of ALP-encoding genes in the genome of this non-host-associated methanogen strongly suggests that target surfaces for ALPs other than host tissues also need to be considered as potential interaction partners The high abundance of ALPs may also indicate that these types of proteins are more characteristic for specific phylogenetic groups of methanogens rather than being indicative for a particular environment the methanogens thrives in

10 citations


Journal ArticleDOI
Yuchen Wang1, Beibei Chen1, Linshan Sima1, Mengzhuo Cao1, Xiangdong Chen1 
01 Mar 2017-Archaea
TL;DR: Seven vectors were constructed and six of which were confirmed to possess replication ability in a pyrF-deletion derivative of J7 (J7-F), the first reported archaeon harboring both plasmid and chromosome-based temperate viruses.
Abstract: Haloarchaeon Natrinema sp. J7, the first reported archaeon harboring both plasmid and chromosome-based temperate viruses, is a useful model for investigating archaeal virus-host and virus-virus interactions. However, the lack of genetic tools has limited such studies. On the basis of the automatically replicating sequences of the J7 chromosome and the pyrF marker, we constructed seven vectors, six of which were confirmed to possess replication ability in a pyrF-deletion derivative of J7 (J7-F). Among these vectors, pFJ1, pFJ4, and pFJ6 could be transformed into the host strain with relatively high efficiency (approximately 103 colony-forming units/μg DNA) and were present at about one copy per chromosome. These three vectors could be stably maintained in J7-F without selection and were used for heterologous protein expression. Only pFJ6 was found to be present in the transformed cells in an exclusively episomal, nonintegrated state (one copy per chromosome). In contrast, some pFJ1 and pFJ4 DNA was probably integrated into the J7-F chromosome. In addition, pFJ6 was found to be compatible with pYCJ in J7 cells, suggesting that these two vectors could be used for further studies of virus-virus and virus-host interactions.

6 citations


Journal ArticleDOI
Yanli Zhang1, Linley R. Schofield1, Carrie Sang1, Debjit Dey1, Ron S. Ronimus1 
06 Nov 2017-Archaea
TL;DR: The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.
Abstract: (R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent KM for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the Vmax was 93.9 μmol min−1 mg−1 and kcat was 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.

Journal ArticleDOI
17 Dec 2017-Archaea
TL;DR: The overall findings indicated the reactor-dependent community structures of quaternary amines degradation and provided microbial insight for the improved understanding of engineering application.
Abstract: Tetramethylammonium-degrading methanogenic consortia from a complete-mixing suspended sludge (CMSS) and an upflow anaerobic sludge blanket (UASB) reactors were studied using multiple PCR-based molecular techniques and shotgun proteomic approach. The prokaryotic 16S rRNA genes of the consortia were analyzed by quantitative PCR, high-throughput sequencing, and DGGE-cloning methods. The results showed that methanogenic archaea were highly predominant in both reactors but differed markedly according to community structure. Community and proteomic analysis revealed that Methanomethylovorans and Methanosarcina were the major players for the demethylation of methylated substrates and methane formation through the reduction pathway of methyl-S-CoM and possibly, acetyl-CoA synthase/decarbonylase-related pathways. Unlike high dominance of one Methanomethylovorans population in the CMSS reactor, diverse methylotrophic Methanosarcina species inhabited in syntrophy-like association with hydrogenotrophic Methanobacterium in the granular sludge of UASB reactor. The overall findings indicated the reactor-dependent community structures of quaternary amines degradation and provided microbial insight for the improved understanding of engineering application.

Journal ArticleDOI
24 Apr 2017-Archaea
TL;DR: The crystal structures of CDS from Thermococcus onnurineus NA1 (ToCDS), which include native internal aldimine (NAT), gem-diamine (GD) with alanine, internal a Aldimine structure with existingAlanine (IAA), and internal aaldimine with persulfide-bound Cys356 (PSF) structures are determined.
Abstract: Thermococcus onnurineus NA1 is an anaerobic archaeon usually found in a deep-sea hydrothermal vent area, which can use elemental sulfur (S0) as a terminal electron acceptor for energy. Sulfur, essential to many biomolecules such as sulfur-containing amino acids and cofactors including iron-sulfur cluster, is usually mobilized from cysteine by the pyridoxal 5'-phosphate- (PLP-) dependent enzyme of cysteine desulfurase (CDS). We determined the crystal structures of CDS from Thermococcus onnurineus NA1 (ToCDS), which include native internal aldimine (NAT), gem-diamine (GD) with alanine, internal aldimine structure with existing alanine (IAA), and internal aldimine with persulfide-bound Cys356 (PSF) structures. The catalytic intermediate structures showed the dihedral angle rotation of Schiff-base linkage relative to the PLP pyridine ring. The ToCDS structures were compared with bacterial CDS structures, which will help us to understand the role and catalytic mechanism of ToCDS in the archaeon Thermococcus onnurineus NA1.