scispace - formally typeset
Search or ask a question
JournalISSN: 1085-9195

Cell Biochemistry and Biophysics 

Springer Science+Business Media
About: Cell Biochemistry and Biophysics is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Apoptosis & Medicine. It has an ISSN identifier of 1085-9195. Over the lifetime, 2592 publications have been published receiving 60426 citations. The journal is also known as: Cell Biochem. Biophys..
Topics: Apoptosis, Medicine, Cell growth, Cell culture, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: In this review, primary attention is given to the antioxidant (and prooxidant) activity of polyphenols arising from their interactions with iron both in vitro and in vivo.
Abstract: In this review, primary attention is given to the antioxidant (and prooxidant) activity of polyphenols arising from their interactions with iron both in vitro and in vivo. In addition, an overview of oxidative stress and the Fenton reaction is provided, as well as a discussion of the chemistry of iron binding by catecholate, gallate, and semiquinone ligands along with their stability constants, UV–vis spectra, stoichiometries in solution as a function of pH, rates of iron oxidation by O2 upon polyphenol binding, and the published crystal structures for iron–polyphenol complexes. Radical scavenging mechanisms of polyphenols unrelated to iron binding, their interactions with copper, and the prooxidant activity of iron–polyphenol complexes are briefly discussed.

1,027 citations

Journal ArticleDOI
TL;DR: In vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.
Abstract: Melatonin (N-acetyl-5-methoxytryptamine), an endogenously produced indole found throughout the animal kingdom, was recently reported, using a variety of techniques, to be a scavenger of a number of reactive oxygen and reactive nitrogen species both in vitro and in vivo. Initially, melatonin was discovered to directly scavenge the high toxic hydroxyl radical (*OH). The methods used to prove the interaction of melatonin with the *OH included the generation of the radical using Fenton reagents or the ultraviolet photolysis of hydrogen peroxide (H202) with the use of spin-trapping agents, followed by electron spin resonance (ESR) spectroscopy, pulse radiolysis followed by ESR, and several spectrofluorometric and chemical (salicylate trapping in vivo) methodologies. One product of the reaction of melatonin with the *OH was identified as cyclic 3-hydroxymelatonin (3-OHM) using high-performance liquid chromatography with electrochemical (HPLC-EC) detection, electron ionization mass spectrometry (EIMS), proton nuclear magnetic resonance (1H NMR) and COSY 1H NMR. Cyclic 3-OHM appears in the urine of humans and other mammals and in rat urine its concentration increases when melatonin is given exogenously or after an imposed oxidative stress (exposure to ionizing radiation). Urinary cyclic 3-OHM levels are believed to be a biomarker (footprint molecule) of in vivo *OH production and its scavenging by melatonin. Although the data are less complete, besides the *OH, melatonin in cell-free systems has been shown to directly scavenge H2O2, singlet oxygen (1O2) and nitric oxide (NO*), with little or no ability to scavenge the superoxide anion radical (O2*-) In vitro, melatonin also directly detoxifies the peroxynitrite anion (ONOO-) and/or peroxynitrous acid (ONOOH), or the activated form of this molecule, ONOOH*; the product of the latter interaction is proposed to be 6-OHM. How these in vitro findings relate to the in vivo antioxidant actions of melatonin remains to be established. The ability of melatonin to scavenge the lipid peroxyl radical (LOO*) is debated. The weight of the evidence is that melatonin is probably not a classic chain-breaking antioxidant, since its ability to scavenge the LOO* seems weak. Its ability to reduce lipid peroxidation may stem from its function as a preventive antioxidant (scavenging initiating radicals), or yet unidentified actions. In sum, in vitro melatonin acts as a direct free radical scavenger with the ability to detoxify both reactive oxygen and reactive nitrogen species; in vivo, it is an effective pharmacological agent in reducing oxidative damage under conditions in which excessive free radical generation is believed to be involved.

673 citations

Journal ArticleDOI
TL;DR: Plants produce a range of ligands for cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn), and these ligands are prevalent in leaves, even though malate is more abundant, and little is known about the counterpart situation for Cu and Zn.
Abstract: Plants produce a range of ligands for cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). Cd- and Zn-citrate complexes are prevalent in leaves, even though malate is more abundant. In the xylem sap moving from roots to leaves, citrate and histidine are the principal ligands for Cu, Ni, and Zn. Phosphorus-rich globular bodies in young roots are probably Zn-phytate. Metallothioneins (MTs) are cysteine (Cys)-rich ligands. Plants produce class II MTs (MT-IIs) which differ from the archetypal mammalian MT-I in the location and number of Cys. The Ec protein from wheat embryos has Cys in three domains, binds Zn, and disappears with seedling development. The first 59 amino acids have been sequenced for the protein. Fifty-eight genes for MT-IIs, from a range of plants and tissues, predict proteins with Cys in two domains. Most of the predicted proteins have not been isolated, and their metal binding is poorly documented. Three protein bands, corresponding to six MT genes, have been isolated fromArabidopsis, and the amino acids sequenced for nine fragments. The MT-IIIs are atypical, nontranslationally synthesized polypeptides with variously repeating γ-glutamylcysteine units. Of the five families known, those with carboxy-terminal glycine are the most widespread among plants, algae, and certain yeasts. A heterogeneous grouping of these molecules form Cd-binding complexes with tetrahedral coordination and a Cd-sulfur interatomic distance of 2.52 A. One complex is cytosolic, the dominant one is vacuolar. Together, they can bind a large proportion of cellular Cd; other ligands may also function. Little is known about the counterpart situation for Cu and Zn.

645 citations

Journal ArticleDOI
TL;DR: Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression in diabetes.
Abstract: The morbidity and mortality associated with diabetes is the result of the myriad complications related to the disease One of the most explored hypotheses to explain the onset of complications is a hyperglycemia-induced increase in oxidative stress Reactive oxygen species (ROS) are produced by oxidative phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase (NADPH), xanthine oxidase, the uncoupling of lipoxygenases, cytochrome P450 monooxygenases, and glucose autoxidation Once formed, ROS deplete antioxidant defenses, rendering the affected cells and tissues more susceptible to oxidative damage Lipid, DNA, and protein are the cellular targets for oxidation, leading to changes in cellular structure and function Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression This review explores the production of ROS and the propagation and consequences of oxidative stress in diabetes

584 citations

Journal ArticleDOI
TL;DR: E Epidemiological studies suggest that addressing socio economical issues is utmost important, so that all women have equal access to medical care from screening to advanced treatment, and only such decisive action can help reduce the worldwide burden of breast cancer.
Abstract: Breast cancer, the most frequently occurring cancer in women, is a major public health problem, with 1,384,155 estimated new cases worldwide with nearly 459,000 related deaths. Breast cancer is highly heterogeneous in its pathological characteristics, some cases showing slow growth with excellent prognosis, while others being aggressive tumors. Current predictions and statistics suggest that both worldwide incidence of breast cancer and related mortality are on the rise. According to 2012 GLOBOCAN statistics, nearly 1.7 million women were diagnosed with breast cancer with 522,000 related deaths—an increase in breast cancer incidence and related mortality by nearly 18 % from 2008. According to American Cancer Society, one in eight women in the United States will develop breast cancer in her lifetime. It has been predicted that the worldwide incidence of female breast cancer will reach approximately 3.2 million new cases per year by 2050. These numbers reflect the magnitude of breast cancer incidence, its effect on society worldwide and the need for urgency for preventive and treatment measures. While technological advances in medical sciences and health care have made it possible to detect the disease early and to start the treatment early on to prevent the progress of the disease into a metastatic state, there are several unanswered questions with regard to the molecular mechanisms that underlie the aggressiveness of certain forms of this disease. Epidemiological studies suggest that addressing socio economical issues is utmost important, so that all women have equal access to medical care from screening to advanced treatment, and only such decisive action can help reduce the worldwide burden of breast cancer.

505 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202330
202282
202197
202051
201933
201843