scispace - formally typeset
Search or ask a question

Showing papers in "Drinking Water Engineering and Science in 2008"


Journal ArticleDOI
TL;DR: In this paper, the results showed that the rapid determination methods (i.e., FCM and ATP) correlated well (R2=0.69), but only a weak correlation was observed between the rapid methods and conventional HPC data.
Abstract: . The general microbial quality of drinking water is normally monitored by heterotrophic plate counts (HPC). This method has been used for more than 100 years and is recommended in drinking water guidelines. However, the HPC method is handicapped because it is time-consuming and restricted to culturable bacteria. Recently, rapid and accurate detection methods have emerged, such as adenosine tri-phosphate (ATP) measurements to assess microbial activity in drinking water, and flow cytometry (FCM) to determine the total cell concentration (TCC). It is necessary and important for drinking water quality control to understand the relationships among the conventional and new methods. In the current study, all three methods were applied to 200 drinking water samples obtained from two local buildings connected to the same distribution system. Samples were taken both on normal working days and weekends, and the correlations between the different microbiological parameters were determined. TCC in the samples ranged from 0.37–5.61×105 cells/ml, and two clusters, the so-called high (HNA) and low (LNA) nucleic acid bacterial groups, were clearly distinguished. The results showed that the rapid determination methods (i.e., FCM and ATP) correlated well (R2=0.69), but only a weak correlation (R2=0.31) was observed between the rapid methods and conventional HPC data. With respect to drinking water monitoring, both FCM and ATP measurements were confirmed to be useful and complimentary parameters for rapid assessing of drinking water microbial quality.

94 citations


Journal ArticleDOI
TL;DR: In this article, a stochastic demands-based network water quality model is proposed for assessing water quality in the drinking water distribution system, which is probabilistic in nature.
Abstract: Today, there is a growing interest in network water quality modelling. The water quality issues of interest relate to both dissolved and particulate substances. For dissolved substances the main interest is in residual chlorine and (microbiological) contaminant propagation; for particulate substances it is in sediment leading to discolouration. There is a strong influence of flows and velocities on transport, mixing, production and decay of these substances in the network. This imposes a different approach to demand modelling which is reviewed in this article. For the large diameter lines that comprise the transport portion of a typical municipal pipe system, a skeletonised network model with a top-down approach of demand pattern allocation, a hydraulic time step of 1 h, and a pure advection-reaction water quality model will usually suffice. For the smaller diameter lines that comprise the distribution portion of a municipal pipe system, an all-pipes network model with a bottom-up approach of demand pattern allocation, a hydraulic time step of 1 min or less, and a water quality model that considers dispersion and transients may be needed. Demand models that provide stochastic residential demands per individual home and on a one-second time scale are available. A stochastic demands based network water quality model needs to be developed and validated with field measurements. Such a model will be probabilistic in nature and will offer a new perspective for assessing water quality in the drinking water distribution system.

59 citations


Journal ArticleDOI
TL;DR: In this paper, a qualitative analysis of variables using principal component analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds, such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection.
Abstract: Rejections of pharmaceutical compounds (Ibuprofen, Diclofenac, Clofibric acid, Naproxen, Primidone, Phenacetin) and organic compounds (Dichloroacetic acid, Trichloroacetic acid, Chloroform, Bromoform, Trichloroethene, Perchloroethene, Carbontetrachloride, Carbontetrabromide) by NF (Filmtec, Saehan) and RO (Filmtec, Saehan, Toray, Koch) membranes were studied. Chloroform presented the lowest rejection due to small molar volume, equivalent width and length. Diclofenac and Primidone showed high rejections related to high molar volume and length. Dichloroacetic acid and Trichloroacetic acid presented good rejections caused by charge exclusion instead of steric hindrance mechanism influencing rejection. Bromoform and Trichloroethene showed low rejections due to small length and equivalent width. Carbontetrabromide, Perchloroethene and Carbontetrachloride with higher equivalent width than BF and TCE presented better rejections. A qualitative analysis of variables using Principal Component Analysis was successfully implemented for reduction of physical-chemical compound properties that influence membrane rejection of PhACs and organic compounds. Properties such as dipole moment, molar volume, hydrophobicity/hydrophilicity, molecular length and equivalent width were found to be important descriptors for simulation of membrane rejection. For membranes used in the experiments, we may conclude that charge repulsion was an important mechanism of rejection for ionic compounds. After analysis with Multiple Linear Regression, we also may conclude that membrane rejection of neutral compounds was well predicted by molar volume, length, equivalent width, hydrophobicity/hydrophilicity and dipole moment. Molecular weight was a poor descriptor variable for rejection modelling. We were able to provide acceptable statistical significance for important results.

36 citations


Journal ArticleDOI
TL;DR: In this paper, the direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet-, laundry-, bath-, and kitchen-use), both in the dry season and in the rainy season, was conducted in Chiang Mai, Thailand.
Abstract: . The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet-, laundry-, bath-, and kitchen-use), both in the dry season and in the rainy season, was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season would influence awareness for water resources so that water consumption in the dry season would be smaller than that in the rainy season. In addition, it was examined whether the differences in water resources such as public waterworks or non-public waterworks (i.e., community waterworks, mountainous water and groundwater), affected the amount of water use. A small-sized accumulative water meter was developed for measurement. This survey provides important information for water demand estimations and water supply planning in middle-developed countries where water consumption is expected to increase in future.

27 citations