scispace - formally typeset
Search or ask a question
JournalISSN: 0264-4401

Engineering Computations 

Emerald Publishing Limited
About: Engineering Computations is an academic journal published by Emerald Publishing Limited. The journal publishes majorly in the area(s): Finite element method & Computer science. It has an ISSN identifier of 0264-4401. Over the lifetime, 2689 publications have been published receiving 43173 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new nature‐inspired metaheuristic optimization algorithm, called bat algorithm (BA), based on the echolocation behavior of bats is introduced, and the optimal solutions obtained are better than the best solutions obtained by the existing methods.
Abstract: – Nature‐inspired algorithms are among the most powerful algorithms for optimization. The purpose of this paper is to introduce a new nature‐inspired metaheuristic optimization algorithm, called bat algorithm (BA), for solving engineering optimization tasks., – The proposed BA is based on the echolocation behavior of bats. After a detailed formulation and explanation of its implementation, BA is verified using eight nonlinear engineering optimization problems reported in the specialized literature., – BA has been carefully implemented and carried out optimization for eight well‐known optimization tasks; then a comparison has been made between the proposed algorithm and other existing algorithms., – The optimal solutions obtained by the proposed algorithm are better than the best solutions obtained by the existing methods. The unique search features used in BA are analyzed, and their implications for future research are also discussed in detail.

1,316 citations

Journal ArticleDOI
TL;DR: In this article, a general quadrilateral shell element for geometric and material nonlinear analysis is presented, which is formulated using three-dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells.
Abstract: A new four‐node (non‐flat) general quadrilateral shell element for geometric and material non‐linear analysis is presented. The element is formulated using three‐dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells. The formulation of the element and the solutions to various test and demonstrative example problems are presented and discussed.

1,187 citations

Journal ArticleDOI
TL;DR: Discrete element methods are numerical procedures for simulating the complete behavior of systems of discrete, interacting bodies as mentioned in this paper, and they can be classified into four classes: the distinct element method, modal methods, discontinuous deformation analysis and the momentum exchange method.
Abstract: Discrete element methods are numerical procedures for simulating the complete behaviour of systems of discrete, interacting bodies. Three important aspects of discrete element programs are examined: (1) the representation of contacts; (2) the representation of solid material; and (3) the scheme used to detect and revise the set of contacts. A proposal is made to define what constitutes a discrete element program, and four classes of such programs are described: the distinct element method, modal methods, discontinuous deformation analysis and the momentum‐exchange method. Several applications and examples are presented, and a list is given of suggestions for future developments.

621 citations

Journal ArticleDOI
TL;DR: In this article, three different approaches are scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher-order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the adding of rate dependence.
Abstract: Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi‐brittle failure. In this contribution three different approaches will be scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher‐order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the addition of rate dependence. By means of a number of numerical simulations it will be investigated under which conditions these enriched continuum theories permit localization of deformation without losing ellipticity for static problems and hyperbolicity for dynamic problems. For the latter class of problems the crucial role of dispersion in wave propagation in strain‐softening media will also be highlighted.

598 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the issues involved in the development of combined finite/discrete element methods, both from a fundamental theoretical viewpoint and some related algorithmic considerations essential for the efficient numerical solution of large scale industrial problems.
Abstract: This paper discusses the issues involved in the development of combined finite/discrete element methods; both from a fundamental theoretical viewpoint and some related algorithmic considerations essential for the efficient numerical solution of large scale industrial problems. The finite element representation of the solid region is combined with progressive fracturing, which leads to the formation of discrete elements, which may be composed of one or more deformable finite elements. The applicability of the approach is demonstrated by the solution of a range of examples relevant to various industrial sections.

586 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202392
2022169
2021203
2020132
2019203
2018150