scispace - formally typeset
Search or ask a question

Showing papers in "Flow Turbulence and Combustion in 2018"


Journal ArticleDOI
TL;DR: In this article, the authors systematically assessed how spanwise spacing affects turbulence structure in high Reynolds number channel flows via two-point correlations, and found that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography.
Abstract: Wall-bounded turbulent flows over surfaces with spanwise heterogeneous surface roughness – that is, spanwise-adjacent patches of relatively high and low roughness – exhibit mean flow phenomena entirely different to what would otherwise exist in the absence of spanwise heterogeneity. In the outer layer, mean counter-rotating rolls occupy the depth of the flow, and are positioned such that “upwelling” and “downwelling” occurs above the low and high roughness, respectively. It has been comprehensively shown that these secondary flows are Prandtl’s secondary flow of the second kind (Anderson et al., J. Fluid Mech. 768, 316–347 2015). This behaviour indicates that spanwise spacing, s y , between adjacent patches of high and low roughness is, itself, a problem parameter; in this study, we have systematically assessed how s y affects turbulence structure in high Reynolds number channel flows via two-point correlations. “High roughness” is imposed with streamwise-aligned pyramid elements with height, h, selected to be ≈ 5% of the channel half height, H. For $s_{y}/H \gtrsim 1$ , we find that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography. For s y /H ≲ 0.2, turbulence statistics show characteristics very similar to a homogeneous roughness and thus the surface may be regarded as a roughness. For 0.2 ≲ s y /H ≲ 2, the spatial extent of the counter-rotating rolls is controlled by proximity to adjacent rows, and we define such surfaces as being intermediate. We refer to such surfaces as intermediate state.

79 citations


Journal ArticleDOI
TL;DR: The objective of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation closures based on introducing controlled perturbations to the turbulent stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed.
Abstract: Motivated by the sizable increase of available computing resources, large-eddy simulation of complex turbulent flow is becoming increasingly popular. The underlying filtering operation of this approach enables to represent only large-scale motions. However, the small-scale fluctuations and their effects on the resolved flow field require additional modeling. As a consequence, the assumptions made in the closure formulations become potential sources of incertitude that can impact the quantities of interest. The objective of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation closures. In particular, the methodology proposed is independent of the initial model form, computationally efficient, and suitable to general flow solvers. The approach is based on introducing controlled perturbations to the turbulent stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed. The framework is rigorously described, and physically plausible bounds for the perturbations are proposed. As a means to test its performance, a comprehensive set of numerical experiments are reported for which physical interpretation of the deviations in the quantities of interest are discussed.

52 citations


Journal ArticleDOI
TL;DR: In this article, the effect of inflow turbulence on the flow behavior around a SD7003 airfoil was investigated using a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain.
Abstract: The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec = 60,000, an angle of attack α = 4∘ and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0% ≤ TI ≤ 11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.

49 citations


Journal ArticleDOI
TL;DR: In this paper, the selective non-catalytic reduction (SNCR) process used to transform nitrogen monoxide molecules into environmentally friendly gases is reviewed with its numerical modeling, and various options in operation today are presented for coal-fired or waste-to-energy power plants, biomass and CO boilers.
Abstract: The selective non-catalytic reduction (SNCR) process used to transform nitrogen monoxide molecules into environmentally friendly gases is reviewed with its numerical modeling. The fundamentals of SNCR in terms of chemistry and flow physics are first discussed, to then examine how they impact on the design and optimization of furnaces and incinerators relying on this technology. The various options in operation today are presented for coal-fired or waste-to-energy power plants, biomass and CO boilers. In complement, specific applications using additive components are discussed along with the amine reclaimer waste approach. The methodology and the challenges of computational fluid dynamics applied to SNCR systems are reviewed, before discussing emerging simulation techniques, as large eddy simulation (LES) of such complex systems. The modeling of the multicomponent evaporation of the liquid reagent injected for transforming NOx, as urea, and the modeling of the chemistry in the gaseous phase, are addressed for the numerical simulation of SNCR. Finally, reduced-order modeling of SNCR is discussed and perspectives are drawn for the control, in situ, of SNCR systems.

49 citations


Journal ArticleDOI
TL;DR: In this article, the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface was studied. And the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored.
Abstract: A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.

43 citations


Journal ArticleDOI
TL;DR: It is shown that the impeller is incapable to maintain constant efficiency at surge operating conditions due to the extreme alteration of the incidence angle, which induces unsteady flow momentum transfer downstream, which is reflected as compression wave at the compressor outlet traveling toward the impellers.
Abstract: Flow instabilities such as Rotating Stall and Surge limit the operating range of centrifugal compressors at low mass-flow rates. Employing compressible Large Eddy Simulations (LES), their generation mechanisms are exposed. Toward low mass-flow rate operating conditions, flow reversal over the blade tips (generated by the back pressure) causes an inflection point of the inlet flow profile. There, a shear-layer induces vortical structures circulating at the compressor inlet. Traces of these flow structures are observed until far downstream in the radial diffuser. The tip leakage flow exhibits angular momentum imparted by the impeller, which deteriorates the incidence angles at the blade tips through an over imposed swirling component to the incoming flow. We show that the impeller is incapable to maintain constant efficiency at surge operating conditions due to the extreme alteration of the incidence angle. This induces unsteady flow momentum transfer downstream, which is reflected as compression wave at the compressor outlet traveling toward the impeller. There, the pressure oscillations govern the tip leakage flow and hence, the incidence angles at the impeller. When these individual self-exited processes occurs in-phase, a surge limit-cycle establishes.

37 citations


Journal ArticleDOI
TL;DR: Two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model are proposed and a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered.
Abstract: For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.

32 citations


Journal ArticleDOI
TL;DR: It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.
Abstract: A three-dimensional compressible Direct Numerical Simulation (DNS) analysis has been carried out for head-on quenching of a statistically planar stoichiometric methane-air flame by an isothermal inert wall. A multi-step chemical mechanism for methane-air combustion is used for the purpose of detailed chemistry DNS. For head-on quenching of stoichiometric methane-air flames, the mass fractions of major reactant species such as methane and oxygen tend to vanish at the wall during flame quenching. The absence of $\text {OH}$ at the wall gives rise to accumulation of carbon monoxide during flame quenching because $\text {CO}$ cannot be oxidised anymore. Furthermore, it has been found that low-temperature reactions give rise to accumulation of $\text {HO}_{2}$ and $\mathrm {H}_{2}\mathrm {O}_{2}$ at the wall during flame quenching. Moreover, these low temperature reactions are responsible for non-zero heat release rate at the wall during flame-wall interaction. In order to perform an in-depth comparison between simple and detailed chemistry DNS results, a corresponding simulation has been carried out for the same turbulence parameters for a representative single-step Arrhenius type irreversible chemical mechanism. In the corresponding simple chemistry simulation, heat release rate vanishes once the flame reaches a threshold distance from the wall. The distributions of reaction progress variable c and non-dimensional temperature T are found to be identical to each other away from the wall for the simple chemistry simulation but this equality does not hold during head-on quenching. The inequality between c (defined based on $\text {CH}_{4}$ mass fraction) and T holds both away from and close to the wall for the detailed chemistry simulation but it becomes particularly prominent in the near-wall region. The temporal evolutions of wall heat flux and wall Peclet number (i.e. normalised wall-normal distance of $T = 0.9$ isosurface) for both simple and detailed chemistry laminar and turbulent cases have been found to be qualitatively similar. However, small differences have been observed in the numerical values of the maximum normalised wall heat flux magnitude $\left ({\Phi }_{\max } \right )_{\mathrm {L}}$ and the minimum Peclet number $(Pe_{\min })_{\mathrm {L}}$ obtained from simple and detailed chemistry based laminar head-on quenching calculations. Detailed explanations have been provided for the observed differences in behaviours of $\left ({\Phi }_{\max }\right )_{\mathrm {L}}$ and $(Pe_{\min })_{\mathrm {L}}$ . The usual Flame Surface Density (FSD) and scalar dissipation rate (SDR) based reaction rate closures do not adequately predict the mean reaction rate of reaction progress variable in the near-wall region for both simple and detailed chemistry simulations. It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.

32 citations


Journal ArticleDOI
TL;DR: In this paper, the curvature statistics of turbulent premixed Bunsen flames have been analyzed using a Direct Numerical Simulation (DNS) database of turbulent bunsen flames at ambient and elevated pressures.
Abstract: The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydro-dynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.

30 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin friction, relative to weak attenuation by negative fluctuations.
Abstract: This study is motivated by the observation that the drag-reduction effectiveness achieved by the imposition of oscillatory spanwise wall motion declines with Reynolds number. The question thus posed is whether the decline is linked to the increasingly strong influence of large-scale outer structures in the log layer on the near-wall turbulence, in general, and the streak strength in the viscosity-affected layer, in particular – a process referred to as modulation. This question is addressed via an extensive statistical analysis of DNS data for a channel flow at a friction Reynolds number 1020, subjected to oscillatory spanwise wall motion at a nominal wall-scaled period of 100. The analysis rests on a separation of turbulent scales by means of the Empirical Mode Decomposition. This method is used to derive conditional statistics of small-scale motions and skin friction subject to prescribed intensity of large-scale motions – referred to as footprinting. It is shown that the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin friction. Positive large-scale fluctuations are also shown to be the cause of a major amplification of small-scale streaks, relative to weak attenuation by negative fluctuations. This highly asymmetric process is likely to be indirectly influential on the drag-reduction process, although it is not possible to identify this indirect effect in quantitative terms as part of the present analysis.

30 citations


Journal ArticleDOI
TL;DR: The broad range of capabilities of the numerical method is shown by assessing the scheme for underresolved simulations (implicit large-eddy simulation) of the higher Reynolds number in a detailed h/p convergence study.
Abstract: We present fully resolved computations of flow over periodic hills at the hill-Reynolds numbers $\text {Re}_{H}= 5{,}600$ and $\text {Re}_{H}= 10{,}595$ with the highest fidelity to date. The calculations are performed using spectral incompressible discontinuous Galerkin schemes of $8^{\text {th}}$ and $7^{\text {th}}$ order spatial accuracy, $3^{\text {rd}}$ order temporal accuracy, as well as 34 and 180 million grid points, respectively. We show that the remaining discretization error is small by comparing the results to h- and p-coarsened simulations. We quantify the statistical averaging error of the reattachment length, as this quantity is widely used as an ‘error norm’ in comparing numerical schemes. The results exhibit good agreement with the experimental and numerical reference data, but the reattachment length at $\text {Re}_{H}= 10{,}595$ is predicted slightly shorter than in the most widely used LES references. In the second part of this paper, we show the broad range of capabilities of the numerical method by assessing the scheme for underresolved simulations (implicit large-eddy simulation) of the higher Reynolds number in a detailed h/p convergence study.

Journal ArticleDOI
TL;DR: In this article, a flamelet generated manifold (FGM) is used to simulate coal combustion with a single-phase gas flame and a coal particle having the same thermal power as the flame.
Abstract: In this work a recently presented combustion chamber that is specifically designed for the investigation of gas-assisted coal combustion and the validation of models is simulated under reactive conditions for the first time. In the configuration coal combustion is assisted and stabilized by a methane flame. In the course of the investigation, the configuration’s complexity is increased successively. Results of the isothermal single-phase flow are discussed first. Subsequently, reproducibility of the single-phase methane flame by means of the applied modeling approach is evaluated. In a further step, coal particles having the same thermal power as the methane flame are injected into the configuration. Particle histories, the conversion of the coal particles as well as its retroactive effect on the gas phase are investigated. Experimental results based on laser diagnostics are provided for all operating points and used for comparison with numerical results. Gas phase velocity fields for all operating points are available. In order to identify the reaction in the reactive single-phase case planar laser induced fluorescence of the OH-radical (OH-PLIF) was applied. Overall good agreement between numerical and experimental results could be obtained. In the Large Eddy Simulation (LES) a Flamelet Generated Manifold (FGM) based model is utilized. The four-dimensional manifold is spanned by two mixture fractions, a reaction progress variable and the enthalpy on which the gas phase chemistry gets mapped onto. Thereby, the model accounts for both, volatiles reaction and char conversion. Furthermore, finite rate chemistry effects as well as non-adiabatic physics are considered.

Journal ArticleDOI
TL;DR: Despite the mechanics of the dynamic surface resulting in some out-of-plane motion (which is small in comparison to the in-plane streamwise movement), the positive drag reduction results are encouraging for future investigations at higher Reynolds numbers.
Abstract: The experimental control of turbulent boundary layers using streamwise travelling waves of spanwise wall velocity, produced using a novel active surface, is outlined in this paper. The innovative surface comprises a pneumatically actuated compliant structure based on the kagome lattice geometry, supporting a pre-tensioned membrane skin. Careful design of the structure enables waves of variable length and speed to be produced in the flat surface in a robust and repeatable way, at frequencies and amplitudes known to have a favourable influence on the boundary layer. Two surfaces were developed, a preliminary module extending 152 mm in the streamwise direction, and a longer one with a fetch of 2.9 m so that the boundary layer can adjust to the new surface condition imposed by the forcing. With a shorter, 1.5 m portion of the surface actuated, generating an upstream-travelling wave, a drag reduction of 21.5% was recorded in the boundary layer with Re τ = 1125. At the same flow conditions, a downstream-travelling produced a much smaller drag reduction of 2.6%, agreeing with the observed trends in current simulations. The drag reduction was determined with constant temperature hot-wire measurements of the mean velocity gradient in the viscous sublayer, while simultaneous laser Doppler vibrometer measurements of the surface recorded the wall motion. Despite the mechanics of the dynamic surface resulting in some out-of-plane motion (which is small in comparison to the in-plane streamwise movement), the positive drag reduction results are encouraging for future investigations at higher Reynolds numbers.

Journal ArticleDOI
TL;DR: This work performs the first systematic study into the transport of entropy perturbations through a realistic gas turbine combustor flow-field, exhibiting large-scale hydrodynamic flow features in the form of swirl, separation, recirculation zones and vortex cores.
Abstract: In the context of combustion noise and combustion instabilities, the transport of entropy perturbations through highly simplified turbulent flows has received much recent attention. This work performs the first systematic study into the transport of entropy perturbations through a realistic gas turbine combustor flow-field, exhibiting large-scale hydrodynamic flow features in the form of swirl, separation, recirculation zones and vortex cores, these being ubiquitous in real combustor flows. The reacting flow-field is simulated using low Mach number large eddy simulations, with simulations validated by comparison to available experimental data. A generic artificial entropy source, impulsive in time and spatially localized at the flame-front location, is injected. The conservation equation describing entropy transport is simulated, superimposed on the underlying flow-field simulation. It is found that the transport of entropy perturbations is dominated by advection, with both thermal diffusion and viscous production being negligible. It is furthermore found that both the mean flow-field and the large-scale unsteady flow features contribute significantly to advective dispersion — neither can be neglected. The time-variation of entropy perturbation amplitude at combustor exit is well-modelled by a Gaussian profile, whose dispersion exceeds that corresponding to a fully-developed pipe mean flow profile roughly by a factor of three. Finally, despite the attenuation in entropy perturbation amplitude caused by advective dispersion, sufficient entropy perturbation strength is likely to remain at combustor exit for entropy noise to make a meaningful contribution at low frequencies.

Journal ArticleDOI
TL;DR: Two new features involving (i) the criteria to identify the fast and slow subspace dimensions, and (ii) a criterion to decide if and when the reuse of the CSP Basis is feasible without deteriorating the overall performance of the solver, have been proved able to increase significantly the computational efficiency of thesolver without sacrificing its accuracy.
Abstract: The G-Scheme is a well established framework for multi-scale adaptive model reduction, whose effectiveness was demonstrated with reference to a number of test models, together with an identification of the critical areas that were in need of further theoretical and computational refinement. In this communication, we report on how we enhanced the solver performance. Two new features involving (i) the criteria to identify the fast and slow subspace dimensions, and (ii) a criterion to decide if and when the reuse of the CSP Basis is feasible without deteriorating the overall performance of the solver, have been proved able to increase significantly the computational efficiency of the solver without sacrificing its accuracy.

Journal ArticleDOI
TL;DR: It is shown that the drag-reducing effect of the permeable substrate, caused by preferential streamwise slip, can be offset by the wall-normal permeability of the substrate, thereby reducing the negative impact of wall- normal permeability.
Abstract: The behaviour of turbulent flow over anisotropic permeable substrates is studied using linear stability analysis and direct numerical simulations (DNS). The flow within the permeable substrate is modelled using the Brinkman equation, which is solved analytically to obtain the boundary conditions at the substrate-channel interface for both the DNS and the stability analysis. The DNS results show that the drag-reducing effect of the permeable substrate, caused by preferential streamwise slip, can be offset by the wall-normal permeability of the substrate. The latter is associated with the presence of large spanwise structures, typically associated to a Kelvin-Helmholtz-like instability. Linear stability analysis is used as a predictive tool to capture the onset of these drag-increasing Kelvin-Helmholtz rollers. It is shown that the appearance of these rollers is essentially driven by the wall-normal permeability $K_{y}^{+}$ . When realistic permeable substrates are considered, the transpiration at the substrate-channel interface is wavelength-dependent. For substrates with low $K_{y}^{+}$ , the wavelength-dependent transpiration inhibits the formation of large spanwise structures at the characteristic scales of the Kelvin-Helmholtz-like instability, thereby reducing the negative impact of wall-normal permeability.

Journal ArticleDOI
TL;DR: In this paper, the presence of a turbulent premixed flame strongly influences the properties of the adjacent velocity boundary layer, and the influence is studied using a generic configuration where at atmospheric pressure turbulent preconditioned methane/air flames interact with a temperature stabilized wall.
Abstract: The presence of a turbulent premixed flame strongly influences the properties of the adjacent velocity boundary layer. This influence is studied here using a generic configuration where at atmospheric pressure turbulent premixed methane/air flames interact with a temperature stabilized wall. The experiment is optimized for well-defined boundary conditions and optical accessibility in the zone where the flame impinges at the wall. Laser based diagnostic methods are used to measure two components of the velocity field by particle image velocimetry simultaneously with the flame front position using laser induced fluorescence of the OH molecule. Two measurement planes are selected that are aligned perpendicularly to the surface of the wall. Based on this data, the flow field near the wall is analyzed by different methodologies using laboratory-fixed and flame-conditioned statistics, a quadrant splitting analysis of the Reynolds stresses and an evaluation of the production term of the turbulent kinetic energy. The results of chemically reactive cases are compared to their corresponding non-reactive flows for otherwise identical inflow conditions. In the zone of flame-wall interactions the boundary layer structure and its turbulence are dominated by the turbulent flame. Important features are that the flame compresses the boundary layer already upstream the location where the flame is finally quenched and that ejection and sweeps are no longer the dominant mechanisms as in non-reactive boundary layers. This experimental data may serve additionally as a database for model development for near wall reactive flows.

Journal ArticleDOI
TL;DR: It is shown that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes, accompanied by a significant local skin friction drag reduction.
Abstract: We show that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes. Two different devices, a stationary obstacle (inset) and a device which injects fluid through an annular gap close to the wall, are used to control the flow. Both devices modify the streamwise velocity profile such that the flow in the center of the pipe is decelerated and the flow in the near wall region is accelerated. We present measurements with stereoscopic particle image velocimetry to investigate and capture the development of the relaminarizing flow downstream these devices and the specific circumstances responsible for relaminarization. We find total relaminarization up to Reynolds numbers of 6000, where the skin friction in the far downstream distance is reduced by a factor of 3.4 due to relaminarization. In a smooth straight pipe the flow remains completely laminar downstream of the control. Furthermore, we show that transient (temporary) relaminarization in a spatially confined region right downstream the devices occurs also at much higher Reynolds numbers, accompanied by a significant local skin friction drag reduction. The underlying physical mechanism of relaminarization is attributed to a weakening of the near-wall turbulence production cycle.

Journal ArticleDOI
TL;DR: In this paper, the authors measured and correlated the velocity fluctuations in a streamwise vertical plane with the pressure fluctuations on the reattachment surface, showing that a clear separation between outer flow and the flow close to the surface aft of the backward-facing step is responsible for drastic load reduction.
Abstract: The flow around a backward-facing step in the sub-, trans- and supersonic regimes was investigated at the Trisonic Wind Tunnel Munich with particle image velocimetry and dynamic pressure measurements. These two techniques were combined to simultaneously measure and correlate the velocity fluctuations in a streamwise vertical plane with the pressure fluctuations on the reattachment surface. The results show that the dynamic loads on the reattachment surface increase from subsonic up to the transonic regime while the mean reattachment location moves downstream. As soon as the flow becomes locally supersonic aft of the backward-facing step, the mean reattachment location suddenly moves upstream while the normalized dynamic loads drastically decrease. By correlating the velocity and the dynamic pressure data, it was shown that a clear separation between outer flow and the flow close to the surface aft of the step is responsible for the drastic load reduction. Due to the large difference in pressure/density, the disturbances from the locally supersonic flow do not have an effect on the flow close to the surface. This is also reflected in the power spectral densities of the pressure fluctuations on the surface, showing that at supersonic free-stream Mach numbers a low-frequency pumping motion of the locally subsonic flow is the dominant mode, while in sub-/transonic flow Kelvin-Helmholtz instabilities and a cross-pumping motion of the shear layer dominate the dynamic loads.

Journal ArticleDOI
TL;DR: This work assesses the applicability of slip-length models to represent textured superhydrophobic surfaces, and proposes that the failure is caused by the intensity of the texture-induced flow, rather than its wavelength, becoming comparable to the background turbulence.
Abstract: We assess the applicability of slip-length models to represent textured superhydrophobic surfaces. From the results of direct numerical simulations, and by considering the slip length from a spectral perspective, we discriminate between the apparent boundary conditions experienced by different lengthscales in the overlying turbulent flow. In particular, we focus on the slip lengths experienced by lengthscales relevant to the near wall turbulent dynamics. Our results indicate that the apparent failure of homogeneous slip-length models is not the direct effect of the texture size becoming comparable to the size of eddies in the flow. The texture-induced signal scatters to the entire wavenumber space, affecting the perceived slip length across all lengthscales, even those much larger than the texture. We propose that the failure is caused by the intensity of the texture-induced flow, rather than its wavelength, becoming comparable to the background turbulence.

Journal ArticleDOI
TL;DR: In this paper, the lower wall of the channel is made of staggered cubes with a second fluid locked in the cavities, and the deformation of the interface is fully coupled to the Navier-Stokes equation and tracked in time using a Level Set Method.
Abstract: Direct Numerical Simulations of a turbulent channel flow have been performed. The lower wall of the channel is made of staggered cubes with a second fluid locked in the cavities. Two viscosity ratios have been considered, $m=\mu _{1} / \mu _{2}= 0.02$ and 0.4 (the subscript 1 indicates the fluid in the cavities and 2 the overlying fluid) mimicking the viscosity ratio in super–hydrophobic surfaces (SHS) and liquid infused surfaces (LIS) respectively. A first set of simulations with a slippery interface has been performed and results agree well with those in literature for perfect slip conditions and Stokes approximations. To assess how the dynamics of the interface affects the drag, a second set of DNS has been carried out at $We= 40$ and 400 corresponding to $We^{+}\simeq 10^{-3}$ and $10^{-2}$ . The deformation of the interface is fully coupled to the Navier-Stokes equation and tracked in time using a Level Set Method. Two gas fractions, $GF= 0.5$ and 0.875, have been considered to assess how the spacing between the cubes affects the deformation of the interface and therefore the drag. For the dimensions of the substrate here considered, under the ideal assumption of flat interface, staggered cubes with $GF= 0.875$ provide about $20\%$ drag reduction for $We= 0$ . However, a rapid degradation of the performances is observed when the dynamics of the interface is considered, and the same geometry increases the drag of about $40\%$ with respect to a smooth wall. On the other hand, the detrimental effect of the dynamics of the interface is much weaker for $GF= 0.5$ because of the reduced pitch between the cubes.

Journal ArticleDOI
TL;DR: In this paper, a real-gas flamelet model was proposed to simulate a turbulent jet flame emanating from a coaxial injector at supercritical pressure and cryogenic oxidizer temperature.
Abstract: Propellant injection and turbulent combustion in high-pressure engines is often dominated by real-gas effects. However, previous studies suggested that the departure of the fluid properties from an ideal gas behavior has only a limited effect on the laminar flame structure. This is due to the fact that chemical reactions take place in the flame zone where the temperature is sufficiently high and molecular interactions are negligible, i.e., the ideal gas assumption is valid. On the other hand, various experimental and numerical studies of injection processes at high-pressure conditions demonstrated that real-gas effects can have a strong impact on the turbulent flow. Mixing is influenced by the rapid change of fluid properties. In this work, we exploit the gap in the fidelity of the thermodynamics model needed to describe the laminar flame structure and that needed to describe the turbulent flow field. We then propose a new real-gas flamelet model with increased numerical performance. The computational cost of the new formulation is not significantly higher than that of an ideal gas simulation. The performance of the method is analyzed and the error that is introduced by our assumptions is assessed by comparison to more complete modeling. Finally, the method is used to simulate a turbulent jet flame emanating from a coaxial injector at supercritical pressure and cryogenic oxidizer temperature. The results are compared with experimental OH∗ images giving evidence of the suitability of the present method.

Journal ArticleDOI
TL;DR: An experimental study of the effect of Dielectric Barrier Discharge plasma actuators on the flow separation on the A-pillar of a modern truck under cross-wind conditions has been carried out.
Abstract: An experimental study of the effect of Dielectric Barrier Discharge plasma actuators on the flow separation on the A-pillar of a modern truck under cross-wind conditions has been carried out. The e ...

Journal ArticleDOI
TL;DR: In this paper, a rigorous kinematic analysis of non-material line, surface and volume elements, related to propagating iso-scalar surfaces, is presented; this formalism is valid for both constant and variable density flows.
Abstract: This research aims at gaining some physical insight into the problem of scalar mixing, following the time evolution of propagating iso-surfaces, Y (x, t) = constant, where Y (x, t) stands for any scalar field (e.g., species mass fraction or temperature). First, a rigorous kinematic analysis of non-material line, surface and volume elements, related to propagating iso-scalar surfaces, is presented; this formalism is valid for both constant and variable density flows. Time rates of change of the normal distance and volume between two adjacent iso-surfaces and of area elements, rotation rates of lines and surface elements and an evolution equation for the local mean curvature are obtained. Line and area stretch rates, which encompass additive contributions from the flow and the displacement speed (due to diffusion and reaction), are identified as total strain rates, normal and tangential to the iso-surfaces. Volumetric dilatation rates, addition of line plus area stretch rates, include the mass entrainment rate per unit mass into the non-material volume. Flow and added vorticities, the latter due to gradients of the displacement speed, yield the total vorticity, which provides the real angular velocity of lines and surface elements. A 5123 DNS database for the mixing of inert and reactive scalars in a box of forced statistically stationary and homogeneous turbulence of a constant-density fluid is then examined. A strongly segregated scalar field is prescribed as initial condition. A one-step reaction rate with a characteristic chemical time one order of magnitude greater than the Kolmogorov time micro-scale is used. Data are analyzed at 1.051 large-eddy turnover times after initialization of velocity and scalar fields. Mean negative normal (contractive) and positive tangential (stretching) flow strain rates occur over all mass fractions and scalar-gradient magnitudes. However, means of the total normal strain rate, conditional upon mass fraction, scalar-gradient and mean curvature, are positive everywhere and tend to destroy scalar-gradients for small times. Negative conditioned mean total tangential strain rates (area stretch factor) contract local areas, except for large values of scalar-gradients. Conditional averages of total and added enstrophies are almost identical, which implies a negligible contribution of the flow vorticity to the observed rotation of non-material line and surface elements. The added vorticity is exactly tangential to the iso-surfaces, whereas the flow and total ones are predominantly tangential. Flow sources/sinks of the mean curvature transport equation are much smaller than the added contributions; for this particular DNS database, the local mean curvature development is self-induced by spatial changes of the displacement speed.

Journal ArticleDOI
TL;DR: In this article, particle image velocimetry (PIV) was applied to an optical spark-ignition direct-injection engine to investigate the effects of fuel injection on in-cylinder flow.
Abstract: This study applies particle image velocimetry (PIV) to an optical spark-ignition direct-injection engine in order to investigate the effects of fuel-injection on in-cylinder flow. Five injection timing combinations, each employing a stoichiometric 1:1 split ratio double-injection strategy, were analysed at an engine speed of 1200 RPM and an intake pressure of 100 kPa. Timings ranged from two injections in the intake stroke to two injections in the compression stroke, resulting in a variety of in-cylinder environments from well-mixed to highly turbulent. PIV images were acquired at a sampling frequency of 5 kHz on a selected swirl plane. The flow fields were decomposed into mean and fluctuating components via two spatial filtering approaches — one using a fixed 8 mm cut-off length, and the other using a mean flow speed scaled cut-off length which was tuned in order to match the turbulent kinetic energy (TKE) profile of a 300 Hz temporal filter. From engine performance tests, the in-cylinder pressure traces, indicated mean effective pressure (IMEP), and combustion phasing data showed very high sensitivity to injection timing variations. To explain the observed trend, correspondence between the measured flow and these performance parameters was evaluated. An expected global trend of increasing turbulence with retarded injection timing was clearly observed; however, relationships between TKE and burn rate were not as obvious as anticipated, suggesting that turbulence is not the predominant factor associated with injection timing variations which impacts engine performance. Stronger links were observed between bulk flow velocity and burn rate, particularly during the early stages of flame development. Injection timing was also found to have a significant impact on combustion stability, where it was observed that low-frequency flow fluctuation intensity revealed strong similarities with the coefficient of variance (CoV) of IMEP, suggesting that these fluctuations are a suitable measure of cycle-to-cycle variation — likely due to the influence of bulk flow on flame kernel development.

Journal ArticleDOI
TL;DR: It is observed that successful ignition is mostly connected to a sufficient build-up of a HO2 pool, ultimately initiating production of OH, and ignition probability goes to zero at sufficiently high turbulence intensity when keeping temperature and size of the initial hotspot constant.
Abstract: A systematic study relying on Direct Numerical Simulations (DNS) of premixed hydrogen-air mixtures has been performed to investigate the hotspot ignition characteristics and ignition probability under turbulent conditions. An ignition diagram is first obtained under laminar conditions by a parametric study. The impact of turbulence intensity on ignition delays and ignition probability is then quantified in a statistically-significant manner by repeating a large number of independent DNS realizations. By tracking in a Lagrangian frame the ignition spot, the balance between heat diffusion and heat of chemical reaction is observed as function of time. The evolution of each chemical species and radicals at the ignition spot is checked and the mechanism leading to ignition or misfire are analyzed. It is observed that successful ignition is mostly connected to a sufficient build-up of a HO2 pool, ultimately initiating production of OH. Turbulence always delays ignition, and ignition probability goes to zero at sufficiently high turbulence intensity when keeping temperature and size of the initial hotspot constant.

Journal ArticleDOI
TL;DR: In this article, a particle cluster consisting of a large spherical carrier particle covered with hundreds of small spherical drug particles was exposed to turbulent plug airflow with predefined intensity, and numerical calculations based on the Lattice-Boltzmann method were performed to estimate the possibility of drug particle detachment.
Abstract: Numerical calculations based on the Lattice-Boltzmann method were performed for a particle cluster consisting of a large spherical carrier particle covered with hundreds of small spherical drug particles. This cluster, fixed in space within a cubic computational domain, was exposed to turbulent plug airflow with predefined intensity. Such a situation is found in dry powder inhalers where carrier particles blended with fine drug powder are dispersed in a highly turbulent flow with the objective of detaching the drug powder for pulmonary delivery. Turbulence was generated by a digital filtering technique applied to the inflow velocity boundary condition. This technique was first validated by analysing the turbulence intensity at 15 fluid nodes along the stream-wise direction of the computational domain. The size ratio between the drug and carrier particle was 5 μ m/100 μ m, and the coverage degree of the carrier by the small particles was 50%, which is a typical value for carrier particle blending. The range of carrier particle Reynolds numbers considered was between 80 and 200, typical values found in inhaler devices. Exemplarily, at Re = 200 turbulence intensity was varied from 0.3% to 9.0%. The systematic increase of the mean flow (i.e. 80 < Re <200) resulted in varying turbulence intensities from 20 to 9%. These simulations provided the temporal evolution of the fluid dynamic forces on the drug particles in dependence of their angular position on the carrier in order to estimate the possibility of drug particle detachment. For turbulent conditions (i.e. Re = 200 and I = 9.0%) the maximum fluid forces on the drug particles were found to be about 10-times larger than found in laminar flow. The fluctuations in the forces were found to be higher than the flow velocity fluctuations due to the modification of the boundary layer around the cluster and instabilities triggered by the turbulent flow. There are three possibilities for detaching the drug powder, namely, through lift-off and sliding or rolling. Lift-off was found to be of minor importance due to the observed small normal fluid forces even at Re = 200 and I = 9.0%. The probability of sliding and rolling detachment in dependence of the angular position was estimated based on measured adhesion properties, i.e. van der Waals force, adhesion surface energy and friction coefficient. The remarkable rise of detachment probability for both effects due to the action of turbulence is an important finding of this study. In accordance with laminar flow, rolling detachment occurs before sliding, however in turbulent conditions over the entire carrier particle. The present studies improve the understanding of drug particle detachment from carrier particles in an inhaler device. The results will be the basis for developing Lagrangian detachment models that eventually should allow the optimisation of dry powder inhalators through computational fluid dynamics.

Journal ArticleDOI
TL;DR: This work addresses the prediction of the reacting flow field in a swirl stabilized gas turbine model combustor using large-eddy simulation and highlights the importance of considering the effect of heat loss on the chemical kinetics for an accurate prediction ofThe flow features.
Abstract: This work addresses the prediction of the reacting flow field in a swirl stabilized gas turbine model combustor using large-eddy simulation. The modeling of the combustion chemistry is based on laminar premixed flamelets and the effect of turbulence-chemistry interaction is considered by a presumed shape probability density function. The prediction capabilities of the presented combustion model for perfectly premixed and partially premixed conditions are demonstrated. The effect of partial premixing for the prediction of the reacting flow field is assessed by comparison of a perfectly premixed and partially premixed simulation. Even though significant mixture fraction fluctuations are observed, only small impact of the non-perfect premixing is found on the flow field and flame dynamics. Subsequently, the effect of heat loss to the walls is assessed assuming perfectly premixing. The adiabatic baseline case is compared to heat loss simulations with adiabatic and non-adiabatic chemistry tabulation. The results highlight the importance of considering the effect of heat loss on the chemical kinetics for an accurate prediction of the flow features. Both heat loss simulations significantly improve the temperature prediction, but the non-adiabatic chemistry tabulation is required to accurately capture the chemical composition in the reacting layers.

Journal ArticleDOI
TL;DR: In this article, an atmospheric premixed V-shaped flame interacting with an isothermal cold wall in a side wall quenching (SWQ) configuration is investigated, where a stoichiometric methane/air mixture is used as fuel.
Abstract: Flame-wall interaction (FWI) plays an important role in enclosed combustion systems. For avoiding the complexity of close to reality combustors, in this study an atmospheric premixed V-shaped flame interacting with an isothermal cold wall in a side wall quenching (SWQ) configuration is investigated. A stoichiometric methane/air mixture is used as fuel. A three-dimensional (3D) numerical simulation, which resolves all flow structures is combined with a tabulated chemistry approach (flamelet generated manifold, FGM). Results are compared with experimental data and two-dimensional simulations. The FGM approach is a suitable trade-off between computationally expensive detailed chemistry simulations and over simplified single step mechanisms. 2D simulations are used to investigate the influence of the uncertainty of the wall temperature, to show that the resolution in 3D is sufficient and that the influence of the flame thickening on the wall heat fluxes can be determined. Our results show that the 3D FGM approach is in close agreement to experimentally obtained flow and temperature fields. The dimensionless wall heat flux and Peclet number matches the expected values of 0.16 and 7, respectively. However, during FWI the measured CO mole fractions are not reproduced accurately showing that the transported variables in the present approach of tabulated chemistry do not recover premixed flame structures near walls.

Journal ArticleDOI
TL;DR: An alternative method is proposed as a means for providing a closure for the sub-grid-scale variance, which is a key quantity in reacting flow simulations, and is found to provide quantitatively good estimates of both the un-filtered progress variable and its variance.
Abstract: An alternative method is proposed as a means for providing a closure for the sub-grid-scale variance, which is a key quantity in reacting flow simulations. The method is based on deconvolution, namely a constrained iterative deconvolution method combined with explicit filtering. The assessment of the method is conducted a priori using a direct numerical simulation database, and for the conditions tested in this study the method is found to provide quantitatively good estimates of both the un-filtered progress variable and its variance.