scispace - formally typeset
Search or ask a question
JournalISSN: 0167-739X

Future Generation Computer Systems 

Elsevier BV
About: Future Generation Computer Systems is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Cloud computing & Computer science. It has an ISSN identifier of 0167-739X. Over the lifetime, 6621 publications have been published receiving 246886 citations. The journal is also known as: FGCS.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a cloud centric vision for worldwide implementation of Internet of Things (IoT) and present a Cloud implementation using Aneka, which is based on interaction of private and public Clouds, and conclude their IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.
Abstract: Ubiquitous sensing enabled by Wireless Sensor Network (WSN) technologies cuts across many areas of modern day living. This offers the ability to measure, infer and understand environmental indicators, from delicate ecologies and natural resources to urban environments. The proliferation of these devices in a communicating-actuating network creates the Internet of Things (IoT), wherein sensors and actuators blend seamlessly with the environment around us, and the information is shared across platforms in order to develop a common operating picture (COP). Fueled by the recent adaptation of a variety of enabling wireless technologies such as RFID tags and embedded sensor and actuator nodes, the IoT has stepped out of its infancy and is the next revolutionary technology in transforming the Internet into a fully integrated Future Internet. As we move from www (static pages web) to web2 (social networking web) to web3 (ubiquitous computing web), the need for data-on-demand using sophisticated intuitive queries increases significantly. This paper presents a Cloud centric vision for worldwide implementation of Internet of Things. The key enabling technologies and application domains that are likely to drive IoT research in the near future are discussed. A Cloud implementation using Aneka, which is based on interaction of private and public Clouds is presented. We conclude our IoT vision by expanding on the need for convergence of WSN, the Internet and distributed computing directed at technological research community.

9,593 citations

Journal ArticleDOI
TL;DR: This paper defines Cloud computing and provides the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs), and provides insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA) oriented resource allocation.
Abstract: With the significant advances in Information and Communications Technology (ICT) over the last half century, there is an increasingly perceived vision that computing will one day be the 5th utility (after water, electricity, gas, and telephony). This computing utility, like all other four existing utilities, will provide the basic level of computing service that is considered essential to meet the everyday needs of the general community. To deliver this vision, a number of computing paradigms have been proposed, of which the latest one is known as Cloud computing. Hence, in this paper, we define Cloud computing and provide the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs). We also provide insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA)-oriented resource allocation. In addition, we reveal our early thoughts on interconnecting Clouds for dynamically creating global Cloud exchanges and markets. Then, we present some representative Cloud platforms, especially those developed in industries, along with our current work towards realizing market-oriented resource allocation of Clouds as realized in Aneka enterprise Cloud technology. Furthermore, we highlight the difference between High Performance Computing (HPC) workload and Internet-based services workload. We also describe a meta-negotiation infrastructure to establish global Cloud exchanges and markets, and illustrate a case study of harnessing 'Storage Clouds' for high performance content delivery. Finally, we conclude with the need for convergence of competing IT paradigms to deliver our 21st century vision.

5,850 citations

Journal ArticleDOI
TL;DR: The statistical results and comparisons show that the HHO algorithm provides very promising and occasionally competitive results compared to well-established metaheuristic techniques.
Abstract: In this paper, a novel population-based, nature-inspired optimization paradigm is proposed, which is called Harris Hawks Optimizer (HHO). The main inspiration of HHO is the cooperative behavior and chasing style of Harris’ hawks in nature called surprise pounce. In this intelligent strategy, several hawks cooperatively pounce a prey from different directions in an attempt to surprise it. Harris hawks can reveal a variety of chasing patterns based on the dynamic nature of scenarios and escaping patterns of the prey. This work mathematically mimics such dynamic patterns and behaviors to develop an optimization algorithm. The effectiveness of the proposed HHO optimizer is checked, through a comparison with other nature-inspired techniques, on 29 benchmark problems and several real-world engineering problems. The statistical results and comparisons show that the HHO algorithm provides very promising and occasionally competitive results compared to well-established metaheuristic techniques. Source codes of HHO are publicly available at http://www.alimirjalili.com/HHO.html and http://www.evo-ml.com/2019/03/02/hho .

2,871 citations

Journal ArticleDOI
TL;DR: Computational results on the Traveling Salesman Problem and the Quadratic Assignment Problem show that MM AS is currently among the best performing algorithms for these problems.
Abstract: Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method for attacking hard combinatorial optimization problems. Yet, its performance, when compared to more fine-tuned algorithms, was rather poor for large instances of traditional benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Optimization algorithms could be good alternatives to existing algorithms for hard combinatorial optimization problems, recent research in this area has mainly focused on the development of algorithmic variants which achieve better performance than Ant System. In this paper, we present MAX – MIN Ant System ( MM AS ), an Ant Colony Optimization algorithm derived from Ant System. MM AS differs from Ant System in several important aspects, whose usefulness we demonstrate by means of an experimental study. Additionally, we relate one of the characteristics specific to MM AS — that of using a greedier search than Ant System — to results from the search space analysis of the combinatorial optimization problems attacked in this paper. Our computational results on the Traveling Salesman Problem and the Quadratic Assignment Problem show that MM AS is currently among the best performing algorithms for these problems.

2,739 citations

Journal ArticleDOI
TL;DR: An architectural framework and principles for energy-efficient Cloud computing are defined and the proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS).
Abstract: Cloud computing offers utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of electrical energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only minimize operational costs but also reduce the environmental impact. In this paper, we define an architectural framework and principles for energy-efficient Cloud computing. Based on this architecture, we present our vision, open research challenges, and resource provisioning and allocation algorithms for energy-efficient management of Cloud computing environments. The proposed energy-aware allocation heuristics provision data center resources to client applications in a way that improves energy efficiency of the data center, while delivering the negotiated Quality of Service (QoS). In particular, in this paper we conduct a survey of research in energy-efficient computing and propose: (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering QoS expectations and power usage characteristics of the devices; and (c) a number of open research challenges, addressing which can bring substantial benefits to both resource providers and consumers. We have validated our approach by conducting a performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant cost savings and demonstrates high potential for the improvement of energy efficiency under dynamic workload scenarios.

2,511 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023267
2022637
2021447
2020732
2019815
2018709