scispace - formally typeset
Search or ask a question

Showing papers in "Geologie En Mijnbouw in 2012"


Journal ArticleDOI
TL;DR: In this article, the availability of nearly 100 years of bathymetric measurements allows the analysis of the morphodynamic evolution of the Dutch Wadden Sea under rising sea level and increasing human constraint.
Abstract: The availability of nearly 100 years of bathymetric measurements allows the analysis of the morphodynamic evolution of the Dutch Wadden Sea under rising sea level and increasing human constraint. The historically observed roll-over mechanisms of landward barrier and coastline retreat cannot be sustained naturally due to numerous erosion control measures that have fixed the tidal basin and barrier dimensions. Nevertheless, the large continuous sedimentation in the tidal basins (nearly 600 million m3), the retained inlets and the similar channel-shoal characteristics of the basins during the observation period indicate that the Wadden Sea is resilient to anthropogenic influence, and can import sediment volumes even larger than those needed to compensate the present rate of sea-level rise. The largest sedimentation occurs in the Western Wadden Sea, where the influence of human intervention is dominant. The large infilling rates in closed-off channels, and along the basin shoreline, rather than a gradual increase in channel flat heights, render it likely that this sedimentation is primarily a response to the closure of the Zuiderzee and not an adaptation to sea-level rise. Most of the sediments were supplied by the ebb-tidal deltas. It is, however, unlikely that the sediment volume needed to reach a new equilibrium morphology in the Western Wadden Sea can be delivered by the remaining ebb-tidal deltas alone.

111 citations


Journal ArticleDOI
TL;DR: In this article, a detailed magnetic susceptibility (MS) records from Vojvodina with the Chinese loess record and deep-sea isotope stratigraphy were used to reconstruct the early Early Pleistocene of the Vovjodina Loess-Paleosol chronostratigraphic sequence.
Abstract: Loess deposits in the Vojvodina region, northern Serbia, are among the oldest and most complete loess-paleosol sequences in Europe to date. These thick sequences contain a detailed paleoclimatic record from the late Early Pleistocene. Based on the correlation of detailed magnetic susceptibility (MS) records from Vojvodina with the Chinese loess record and deep-sea isotope stratigraphy we here reconfirm and expand on a stratigraphic model of the Vojvodinian loess-paleosol chronostratigraphic sequence following the Chinese loess stratigraphic system.Variations in MS, dust accumulation rates, and the intensity of pedogenesis demonstrate evidence for a Middle Pleistocene climatic and environmental transition. The onset of loess deposition in Vojvodina also indicates a direct link between dust generation in Europe and that in the interior of Eurasia since the Early Pleistocene. The youngest part of the Early Pleistocene and oldest part of the Middle Pleistocene is characterised by relatively uniform dust accumulation and soil formation rates as well as relatively high magnetic susceptibility values. In contrast, the last five interglacial-glacial cycles are characterised by sharp environmental differences between high dust accumulation rates during the glacials and low rates observed during soil development. The data presented in this study demonstrate the great potential of Vovjodina's loess archives for accurate reconstruction of continental Eurasian Pleistocene climatic and environmental evolution.

92 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present the results of a 3D temperature modeling using a thermal-tectonic forward modeling method, calibrated with subsurface temperature measurements in the Netherlands.
Abstract: Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step involves the generation of a coherent dataset of temperature values for the calibration of the model. In the Netherlands, most of the available measurements (98.8%) are BHT measurements and therefore need to be corrected from the thermal perturbation created during drilling. The remaining 1.2% is composed of DST measurements, which closely resemble the formation temperature (i.e., ±5 °C). The resulting dataset, after correction, gives a total number of 1293 values in 454 wells. Included in this dataset are 412 highly reliable values corrected with the Instantaneous Cylinder Source (ICS) method and 829 values of a lower reliability corrected with the AAPG method. In addition to the corrected values, 52 DST values in 26 wells are available from the Dutch subsurface. The average thermal gradient of this whole dataset is 31.3 °C/km with a surface temperature of 10.1 °C. The second step in the modelling process was the generation of a 3D forward model that focuses on calculating the temperature distribution of the sedimentary basin fill, taking into account the basin evolution of the past 20 Myrs and thermal properties and processes of the whole lithosphere. From the 3D thermal model, we extracted 2D cross sections across well locations to compare model temperatures with calibration data. Furthermore, we present vertical profiles, isodepth maps and temperature projection on geological layers, to discuss the relationship between temperature and geology. Anomalies in this relationship can have several causes and include: 1) the extreme thermal conductivity and complex geometry of the Zechstein salt; 2) enhanced radiogenic heat production of the upper crust due to magmatic intrusions. In addition, our model supports earlier findings that shallow hydrothermal convection in highly permeable sediments can effectively lower thermal conductivity and temperatures in shallow sediments.

71 citations


Journal ArticleDOI
TL;DR: In this article, the impact of changes in the management of rivers and their riparian zones in terms of geomorphology and vegetation has a significant effect on water and sediment transport in headwater catchments.
Abstract: The state of river channels and their riparian zones in terms of geomorphology and vegetation has a significant effect on water and sediment transport in headwater catchments. High roughness in natural rivers due to vegetation and geomorphological attributes generate drag on flowing water. This drag will slow water discharge, which in turn influences the sediment dynamics of the flow. The impacts of changes in the management of rivers and their riparian zone (either by catchment managers or river restoration plans) impacts both up- as well as downstream reaches, and should be assessed holistically prior to the implementation of these plans. To assess the river's current state as well as any possible changes in geomorphology and vegetation in and around the river, effective approaches to characterise the river are needed. In this paper, we present a practical approach for making detailed surveys of relevant river attributes. This methodology has the benefit of being both detailed – describing river depth, width, channel morphology, erosive features and vegetation types – but also being practical in terms of time management. This is accomplished by identifying and describing characteristic benchmark reaches (typical sites) in detail against which the remainder of the river course can be rated. Using this method, a large river stretch can be assessed in a relatively short period while still retrieving high quality data for the total river course. In this way, models with high data requirements for assessing the condition of a river course, can be parameterised without major investments on field surveys. In a small headwater catchment (23 km2) in southwestern Poland, this field methodology was used to retrieve data to run an existing model (HEC-GeoRAS) which can assess the impact of changes in the riparian and channel vegetation and channel management on sedimentation processes and stream flow velocity. This model determines the impact of channel morphology and in-channel and riparian vegetation on stream flow and sediment transport. Using four return periods of flooding (2, 10, 20 and 100 years), two opposing channel management / morphology scenarios were run; a natural channel and a fully regulated channel. The modelling results show an increase in the effect of riparian vegetation / geomorphology with an increase in return period of the modeled peak discharge. More natural channel form and increased roughness reduces the stream flow velocity due to increasing drag from flow obstructions (vegetation and channel morphological features). The higher the flood water stage, the greater the drag due to vegetation on the floodplains of natural river reaches compared to channelised sections. Slower flow rates have an impact on sediment mobilisation and transport in the river.

64 citations


Journal ArticleDOI
TL;DR: DoubletCalc as discussed by the authors is a probabilistic fast model for performance assessment of geothermal doublets for direct heat applications, which can be well applied in better understanding the sensitivity of performance to key subsurface parameters and depth trends therein.
Abstract: In this paper we present a probabilistic fast model for performance assessment of geothermal doublets for direct heat applications. It is a simple yet versatile and multipurpose tool. It can be well applied in better understanding the sensitivity of performance to key subsurface parameters and depth trends therein, and for assessing the probability of success for geothermal projects under technical and financial constraints. The underlying algorithms deliver a sensible accuracy given the uncertainties associated with geothermal projects at exploration state. A public release of the software, available under the name of DoubletCalc, is easy to handle and requires a limited set of input parameters. Thanks to an open source code, DoubletCalc can be implemented in other software applications and extended as it has been implemented for the integration into the national geothermal information system in the Netherlands (ThermoGIS, 2011). Apart from its application for site assessments, the tool can be integrated into automated workflows processing faster representations of key aquifer properties and capable to produce indicative maps for predicted doublet power, economic feasibility and prediction of cumulative amount of heat that can be recovered. These capabilities are specifically important for decision support for policymakers while assessing the effects of particular insurance schemes and funding mechanisms. DoubletCalc cannot and is not intended to substitute geologic exploration approaches. As exploration measures, such as seismic surveys are cost intensive, DoubletCalc can be used to focus geothermal exploration on areas and sites where an enhanced probability of success can be expected.

61 citations


Journal ArticleDOI
TL;DR: In this article, a five years geological mapping project, in which the Netherlands Continental Shelf has been re-examined using all publicly available data, resulted in an important update of the existing dataset.
Abstract: A five years geological mapping project, in which the Netherlands Continental Shelf has been re-examined using all publicly available data, resulted in an important update of the existing dataset. The stratigraphy of over 400 wells has been re-interpreted. New depth and thickness grids, based mainly on the interpretation of 3D seismic data have been produced for the most important stratigraphic intervals from Permian Upper Rotliegend to Neogene. New reservoir grids describe the top, base and thickness of 30 (potential) reservoir units in the area. In addition, the uncertainty related to interpretation and further processing of the data has been assessed. This resulted in maps displaying the standard deviation for the depth of the main stratigraphic intervals. Based on these results and the data already available for the onshore area, an updated structural element map was made for the Netherlands.

52 citations


Journal ArticleDOI
TL;DR: In this paper, a resource assessment methodology has been developed to designate prospective high permeable clastic aquifers and to assess the amount of potential geothermal energy in the Netherlands.
Abstract: A resource assessment methodology has been developed to designate prospective high permeable clastic aquifers and to assess the amount of potential geothermal energy in the Netherlands. It builds from the wealth of deep subsurface data from oil and gas exploration and production which is publicly and digitally available. In the resource assessment various performance indicator maps have been produced for direct heat applications (greenhouse and spatial heating). These maps are based on detailed mapping of depth, thickness, porosity, permeability, temperature and transmissivity (methodology presented in other papers in this NJG issue). In the resource assessment analysis 14 lithostratigraphic units (clastic aquifers) have been considered, ranging in age from the Permian to the Cenozoic. Performance maps have been made which include a) the expected doublet power (MWth) to be retrieved; b) the number of houses or hectares that can be heated from one doublet; and c) a potential indicator map, which provides insight in subsurface suitability for specific applications from a techno-economic perspective. To obtain a nationwide overview of the resource potential in terms of recoverable geothermal energy, a progressive filtering approach was used from total heat content of the reservoirs (Heat In Place – HIP) via the heat that can potentially be recovered (Potential Recovery Heat – PRH) to energy maps taking into account a techno-economic performance evaluation (Recoverable Heat – RH). Results show that the HIP is approximately 820,000 PJ which is significantly more than previous estimates of around 90,000 PJ. This considerable increase in geothermal energy potential is the result of accurate geological mapping of key reservoir properties and the development of state-of-the-art techno-economic performance assessment tools that performs Monte Carlo simulation. Moreover, for the previous estimates boundary conditions were set with the aim to compare the geothermal potential between different EU countries (Rijkers & Van Doorn, 1997). Taking into account techno-economic aspects, the RH is in the order of 85,000 PJ. This is equivalent to ~70% of the ultimate recoverable gas of the Slochteren Gas field. In total over 400 maps have been created or used as input for the resource assessment. Together, they provide comprehensive information for geothermal energy development from various stakeholder perspectives. The maps can be interactively assessed in the web-based portal ThermoGIS (www.thermogis.nl). This application complements existing subsurface information systems available in the Netherlands and supports the geothermal community in assessing the feasibility of a geothermal system on a regional scale.

42 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reconstruct the fluvial development and forcings that culminated in the abandonment of the northern branch of the Oude IJssel-Rhine at the time of the Lateglacial to Holocene transition.
Abstract: In the Weichselian, the Lower Rhine in the Dutch-German border region has used three courses, dissecting ice-marginal topography inherited from the Saalian. In the Late Weichselian, the three courses functioned simultaneously, with the central one gaining importance and the outer ones abandoning. This study aims to reconstruct the fluvial development and forcings that culminated in abandonment of the northern branch ‘Oude IJssel-Rhine’, at the time of the Lateglacial to Holocene transition. The fluvial architecture is studied using a cored transect over the full width of the valley, detailed cross-sections over palaeochannels and geomorphological analysis using digital elevation and borehole data. Biostratigraphy, radiocarbon dating and OSL dating provide a timeframe to reconstruct the temporal fluvial development. In its phase of abandonment, the fluvial evolution of the Oude IJssel-Rhine course is controlled by the ameliorating climate and related vegetation and discharge changes, besides by intrinsic (autogenic) fluvial behaviour such as the competition for discharge with the winning central branch and the vicinity of the Lippe tributary confluence. The rapid climate warming at the start of the Late Glacial resulted in flow contraction as the initial response. Other fluvial geomorphic adjustments followed, with some delay. An aggrading braided or transitional system persisted until the start of the Allerod, when channel patterns finally changed to meandering. Floodplain incision occurred at the Allerod - Younger Dryas transition and a multi-channel system developed fed by Rhine discharge. At the start of the Holocene, this system transformed into a small-scale, local meandering system, which was abandoned shortly after the start of the Holocene. The final abandonment of the Oude IJssel-Rhine and Niers-Rhine courses can be attributed to deep incision of the Central Rhine course in the earliest Holocene and is considered to be controlled by flow contraction induced by climate and related vegetation and discharge changes.

33 citations


Journal ArticleDOI
TL;DR: In this paper, the authors experimentally created a 1.2-m square basin with either a fixed or self-formed tidal inlet and initially flat sediment bed in the tidal basin raised above the bed of the sea.
Abstract: Tidal channel networks, estuaries and ebb deltas are usually formed over a period longer than observations cover. Much is known about their characteristics and formation from linear stability analyses, numerical modelling and field observations. However, experiments are rare whilst these can provide data-rich descriptions of morphological evolution in fully controlled boundary and initial conditions. Our objective is to ascertain whether tidal basins can be formed in experiments, what the possible scale effects are, and whether morphological equilibrium of such systems exists. We experimentally created tidal basins with simple channel networks and ebb deltas in a 1.2 by 1.2 m square basin with either a fixed or self-formed tidal inlet and initially flat sediment bed in the tidal basin raised above the bed of the sea. Rather than create tides by varying water level, we tilted the entire basin over the diagonal. The advantage of this novel method is that the bed surface slopes in downstream direction both during flood and ebb phases, resulting in significant transport and morphological change in the flood phase as well as the ebb phase. This overcomes the major problem of earlier experiments which were entirely ebb-dominated, and reduces the experiment time by an order of magnitude. Ebb deltas formed in sand were entirely bedload dominated whereas the lightweight plastic sediment was intermittently suspended. Channels bifurcated during channel deepening and backward erosion to form a network of up to four orders. For initially dry tidal plains, the tidal prism increased as more sediment eroded from basin to ebb delta, so that evolution accelerated initially. The rate of change, the size of the channels and the final length of channels and delta were very sensitive to the tidal amplitude, tidal period and initial water depth in the basin. Most experiments with sand terminated with all sediment below the threshold for motion, whilst lightweight sediment remained mobile in the inlet region and firstorder channels, suggesting that sustained morphodynamics are feasible in experiments. We discuss how this novel experimental setup can be extended to produce tidal deltas, estuaries and other tidal systems and study their dynamics as a function of their forcing.

31 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantified salt water intrusion and salinisation of groundwater flow systems in two representative case studies in the Wadden Sea area, using the density dependent groundwater flow and transport code MOCDENS3D.
Abstract: Hydrogeological research in coastal areas has gained considerable attention over the last decades due to increasing stresses on fresh groundwater resources. Fundamental groundwater flow and solute transport analyses remain essential for a concise understanding of the governing processes that lead to salinisation of fresh groundwater resources. However, the challenge of modern research is the application and quantification of these processes in real world cases. In this context, deltaic areas are amongst the most difficult study areas as they often have a complex groundwater salinity distribution. The Wadden Sea area in the northern part of the Netherlands is an example of such an area. We quantified salt water intrusion and salinisation of groundwater flow systems in two representative case studies in the Wadden Sea area, using the density dependent groundwater flow and transport code MOCDENS3D. The results indicate that sea-level rise and autonomous processes will cause severe salinisation in the future, especially in the low polder areas close to the sea. In addition, we show that enhanced land subsidence due to salt exploitation accelerates this process. Salinisation can be mitigated to some extent by raising surface water levels in polders and by creating saline groundwater collection areas that maintain a low controlled water level.

31 citations


Journal ArticleDOI
TL;DR: In this article, the authors present and discuss the distribution of fluid and leak-off pressure data from the subsurface of onshore and offshore Netherlands in relation to causes of formation fluid overpressure and the permeability framework.
Abstract: This paper presents and discusses the distribution of fluid and leak-off pressure data from the subsurface of onshore and offshore Netherlands in relation to causes of formation fluid overpressure and the permeability framework. The observed fluid pressure conditions demonstrate a clear regional difference between the southern and the north and north-eastern part of the study area. In the southern area, formation fluid pressures are close to normal and well below measured leak-off pressures. In the north, formation fluids are overpressured and may locally even approach the measured leak-off pressures. The regional differences in fluid overpressure can, in large part, be explained by differences in geologic framework and burial history. In the south, relatively low rates of sedimentary loading and the presence of relatively permeable sedimentary units have led to the currently observed normally pressured conditions. In the northern area, relatively rapid Neogene sediment loading plays an important role in explaining the observed overpressure distributions in Cenozoic mudstones, Cretaceous Chalk and Rijnland groups, and probably also in Jurassic units. The permeability framework of the northern and north-eastern area is significantly affected by Zechstein and Triassic salt deposits and structures. These units are characterised by very low permeability and severely restrict fluid flow and pressure dissipation. This has created hydraulically restricted compartments with high overpressures (for example overpressures exceeding 30 MPa in the Lower Germanic Trias Group in the Terschelling Basin and Dutch Central Graben).

Journal ArticleDOI
TL;DR: In this paper, a workflow was developed to map aquifer properties on a regional scale, including transmissivity and underlying uncertainty, for 20 geothermal aquifers in the Netherlands.
Abstract: Geothermal low enthalpy heat in non-magmatic areas can be produced by pumping hot water from aquifers at large depth (>1 km). Key parameters for aquifer performance are temperature, depth, thickness and permeability. Geothermal exploration in the Netherlands can benefit considerably from the wealth of oil and gas data; in many cases hydrocarbon reservoirs form the lateral equivalent of geothermal aquifers. In the past decades subsurface oil and gas data have been used to develop 3D models of the subsurface structure. These models have been used as a starting point for the mapping of geothermal reservoir geometries and its properties. A workflow was developed to map aquifer properties on a regional scale. Transmissivity maps and underlying uncertainty have been obtained for 20 geothermal aquifers. Of particular importance is to take into account corrections for maximum burial depth and the assessment of uncertainties. The mapping of transmissivity and temperature shows favorable aquifer conditions in the northern part of the Netherlands (Rotliegend aquifers), while in the western and southern parts of the Netherlands aquifers of the Triassic and Upper Cretaceous / Jurassic have high prospectivity. Despite the high transmissivity of the Cenozoic aquifers, the limited depth and temperature reduce the prospective geothermal area significantly. The results show a considerable remaining uncertainty of transmissivity values, due to lack of data and heterogeneous spatial data distribution. In part these uncertainties may be significantly reduced by adding well test results and facies parameters for the map interpolation in future work. For underexplored areas this bears a significant risk, but it can also result in much higher flowrates than originally expected, representing an upside in project performance.

Journal ArticleDOI
TL;DR: In this article, the concept of headward-migrating knickpoints implies a mechanism for incision that is difficult to reconcile with the formation of the broadly parallel river terraces that are observed in many systems.
Abstract: Evidence-based interpretations of fluvial evolution, and especially of river-terrace formation, have advanced significantly in recent decades, with a notable contribution made by activities of the Fluvial Archives Group. Well-dated river-terrace sequences provide frameworks for the understanding of landscape evolution, since they record valley-floor levels that were higher in the past, attributable, from their patterns of occurrence, to regional uplift. The role of climate fluctuation during the Quaternary is also paramount, since this has been an important driver of the varied fluvial activity that has given rise to the staircases of terraces that characterise the temperate latitudes. This approach is contrasted with a more theoretical methodology for using rivers as recorders of landscape evolution, again with an emphasis on uplift, based on the concept of the formation of knickpoints at particular base levels and their migration upstream. Although different timescales can be explored by the two methods, the concept of headward-migrating knickpoints implies a mechanism for incision that is difficult to reconcile with the formation of the broadly parallel river terraces that are observed in many systems. Knickpoints can frequently be observed to coincide with gorge reaches, where river valleys are constricted as a result of resistant bedrock and/or the effects of localised active crustal deformation. This raises the possibility that knickpoints have generally formed in response to factors of local geology rather than migrating from downstream.

Journal ArticleDOI
TL;DR: In this paper, the authors quantified current ideas on the relationship between depositional salt thicknesses, structural style of the main structural elements identified in the Dutch subsurface; 3) timing of deformation; and 4) thickness of the overburden.
Abstract: The Zechstein salt in the Dutch part of the North Sea Basin played a key role in the generation of successful petroleum plays. This is not only because of its sealing capacity, but also because the salt occurs in structures that provide lateral and vertical traps. The structural styles of areas with thick salt and those with none- or thin salt are completely different during phases of extensional or compressional tectonics. This indicates that, indirectly, the depositional thickness of the main Zechstein salt is essential in regulating the loci of the Dutch petroleum systems. In this paper we aim at quantifying current ideas on the relationship between 1) depositional salt thicknesses; 2) structural style of the main structural elements identified in the Dutch subsurface; 3) timing of deformation; and 4) thickness of the overburden. By finalisation of TNO’s subsurface mapping program (see Kombrink et al., this issue), several data products are available that allow evaluation of these relationships. The depositional thickness of the salt was estimated using iterative smoothing of the present day thickness, the results of which account both for regional thickness variations and volume preservation (99%). Fault-distribution analysis shows that faults are only able to penetrate salt with a depositional thickness of <300 m, a transition that demarcates the division between thin- and thick-skinned salt tectonics. In the southern offshore where the salt is thin or absent, the overburden shows the same fault pattern throughout the stratigraphic sequence. In the northern realm, where salt is thicker than 300 m, the salt layer acted as decollement and sub- and supra salt strain are dissimilar. A strong genetic and temporal relationship exists between periods of regional tectonism, halokinetic intensity and thickness distribution of the Zechstein overburden. This relationship is further proven by burial history analysis across two selected profiles in the northern offshore. The analysis focuses on the vertical distribution of the salt by taking into account the depositional and erosional history of the salt overburden, without a-priori defined periods of salt flow. The results corroborate the notion that platforms and highs experienced less extension during the major phases of Jurassic rifting and further suggest that the absence of a thick Jurassic overburden precludes major salt flow during this tectonic phase. Main salt flow was triggered during the Sub-Hercynian and later phases of compression resulting in salt pillow geometries. In the basinal areas, where the Jurassic succession is thickest, salt diapirs and walls formed that are almost exclusively linked to major subsalt faults. Main salt flow occurred during Late Kimmerian rifting, whereas some minor structuration occurred during Sub-Hercynian inversion.

Journal ArticleDOI
TL;DR: The presence of permafrost in Poland north of the line indicating the maximum ice extent of the Vistulian (Weichselian) glaciation after retreat of the land-ice cap has been a subject of debate for a long time as mentioned in this paper.
Abstract: The presence of permafrost in Poland north of the line indicating the maximum ice extent of the Vistulian (Weichselian) glaciation after retreat of the land-ice cap has been a subject of debate for a long time. Investigations in an area at the line of the maximum ice extent of the Pomeranian phase prove that permafrost existed, indeed, after the ice retreat. This conclusion is drawn on the basis of morphological data (the presence of oriented kettle holes), sedimentological data (the nature of the infilling of the kettle holes) and pedological data (permafrost-affected horizons in soil profiles). It appears that the permafrost mostly developed in the ice-free zone that appeared after the retreat of the land-ice cap, but it is likely that some relict permafrost that had originated earlier in front of advancing ice was also still present. The landscape of northern Poland owes its relief partly to the Late Glacial permafrost.

Journal ArticleDOI
TL;DR: In this paper, aeolian dust deposits can be considered as one of the most important archives of past climatic changes, and they are used to calculate sedimentation rates and dust fluxes, while grain-size specifies the dry-deposition velocity.
Abstract: Aeolian dust deposits can be considered as one of the most important archives of past climatic changes. Alternating loess and paleosol strata display variations of the dust load in the Pleistocene atmosphere. By using the observations of recent dust storms, we are able to employ Late Pleistocene stratigraphic datasets (with accurate chronological framework) and detailed granulometric data for making conclusions on the atmospheric dust load in the past. Age-depths models, created from the absolute age data and stratigraphic interpretation, allow us to calculate sedimentation rates and dust fluxes, while grain-size specifies the dry-deposition velocity, i.e. the atmospheric residence time of mineral particles. Thus, the dust concentration can be expressed as the quotient of the dust flux and gravitational settling velocity. Recent observations helped to clarify the mechanisms behind aeolian sedimentation and the physical background of this process has nowadays been well established. Based on these two, main contrasting sedimentary modes of dust transport and deposition can be recognised: the short suspension episodes of the coarse (silt and very fine sand) fraction and the long-range transport of a fine (clay and fine silt) component. Using parametric curve fitting the basic statistical properties of these two sediment populations can be revealed for Pleistocene aeolian dust deposits, as it has been done for loess in Hungary. As we do not have adequate information on the magnitude and frequency of the Pleistocene dust storms, conclusions could only be made on the magnitude of continuous background dust load. The dust concentration can be set in the range between 1100 and 2750 μg/m3. These values are mostly higher than modern dust concentrations, even in arid regions. Another interesting proxy of past atmospheric conditions could be the visibility, being proportional to the dust concentration. According to the known empirical dust concentration – visibility equations, its value is around 6.5 to 26 kilometres.

Journal ArticleDOI
TL;DR: A review of the latest results on fluvial and aeolian landscape evolution in Hungary achieved by our team during the last 20 years is presented in this article, where the Hungarian river terrace system and its chronology was described with special emphasis on the novel threshold concept.
Abstract: Present study provides a review of the latest results on fluvial and aeolian landscape evolution in Hungary achieved by our team during the last 20 years. - The Hungarian river terrace system and its chronology was described with special emphasise on the novel threshold concept. A revised terrace system was created by the compilation of novel terrace chronology and MIS data. Evolution of river terraces was not only governed by climatic factors but tectonic ones too. Incision rate of the Danube, and uplift rate of the Transdanubian Range (TR) was around 0.1-0.3 mm/a in the marginal zones of the TR (mostly based on the published U-series data) and was above 1 mm/a in its axial zone (based on He-3 exposure age dating of strath terraces). - According to a detailed geomorphological investigation of the different channel-planform morphologies in the Middle Tisza region and SajoHernad alluvial fan, six phases of river pattern change and four incision periods were detected during the last 20,000 years. - Wind polished rock surfaces dated by in situ produced cosmogenic Be-10 suggest that deflation was active in Hungary as early as 1.5 Ma ago. According to these exposure age data, Pleistocene denudation rate of the study area (Balaton Highland) was 40-80 m/Ma. - In sand covered areas the alternations of wind-blown layers and buried fossil soils provide information about climate and environment changes. In this study, periods of sand movement were mostly determined by optically stimulated luminescence (OSL) dating methods and five aeolian sand accumulation periods were recognised during the last 25 000 years. - A new loess stratigraphical view was elaborated using the most recent dating methods (luminescence, AAR). The lower part of Mende Upper (MF1-2) pedokomplex is suggested to represent the last interglacial period (MIS 5e). During the last interglacial/glacial period (MIS 5 - MIS 2) several soil-forming periods existed but the preservation of these paleosoils is variable depending on their paleogeomorphological position.

Journal ArticleDOI
TL;DR: In this paper, the authors used the pre-Quaternary Stratigraphic Nomenclature of the Netherlands compiled by Van Adrichem Boogaert &Kouwe in 1993 to provide a consistent framework for use by the Dutch geological community.
Abstract: Exploration in a mature basin requires a detailed classification and standardisation of rock stratigraphy to adequately comprehend the depositional history and prospect architecture. The pre-Quaternary Stratigraphic Nomenclature of the Netherlands compiled by Van Adrichem Boogaert &Kouwe in 1993 provided a consistent framework for use by the Dutch geological community. Over the past twenty years, new biostratigraphic techniques and continued exploration in the Netherlands have provided additional stratigraphic information. Based on this information the Late Jurassic lithostratigraphy in particular, shows significant inaccuracies. The Callovian-Ryazanian strata from the northern offshore of the Netherlands’ territorial waters, termed the Central Graben Subgroup and Scruff Group, reveal a complex sedimentary history. The combination of non-marine to shallow marine lateral facies changes, repetitive log and facies characteristics in time, sea-level and climate change, salt tectonics and structural compartmentalisation hamper straightforward seismic interpretation and log correlation. Recognition of three genetic sequences by Abbink et al. in 2006 enabled an improved reconstruction of the geological history. Further improvements in refinement and reliability of the stratigraphy together with new information on the facies and ages of the successions and about the subsequent tectonostratigraphic development of the northern Dutch offshore area form the basis of the present revision. As a result, earlier lithostratigraphic models have been changed and new lithostratigraphic relationships and names are introduced in this paper.

Journal ArticleDOI
TL;DR: In this article, two long cores obtained from thick loess deposits in the region, both contain clear alternations of loess and paleosols, indicating distinct climate changes during the Quaternary.
Abstract: Reconstruction of a complete Quaternary record of climatic changes in the northeastern Qinghai-Tibetan Plateau is not well obtained, because of high relief and extensive surface erosion. In this study, two long cores obtained from thick loess deposits in the region, both contain clear alternations of loess and paleosols, indicating distinct climate changes during the Quaternary. The palaeomagnetic stratigraphy and optically stimulated luminescence dating indicate that the loess deposition began approximately 2.0 Ma ago, with continuous accumulation until the Holocene. Dust accumulation rates in this region are much higher than those in the central Chinese Loess Plateau, suggesting an extended dust source and/or robust transport agent. Variations of magnetic susceptibility of the loess are a good proxy index of warm/wet and cold/dry alternations and are correlated with the intensity of pedogensis. The magnetic susceptibility record reveals that a relatively cold/dry climate dominated the northeastern Qinghai-Tibetan Plateau in the Quaternary, punctuated by warm/wet phases. A stepwise strengthening of the plateau summer monsoon, with a significant strengthening at around 1200-1000 ka and at least 7 phases of strengthening of the plateau summer monsoon in the past 800 ka are interpreted from the core data. The cores provide evidence that strengthened warm/wet climates occurred at around 80-130, 190-250, 290-340, 385-420, 500-625, 690-720 and 755-780 ka, which may correlate to warm/wet phases in the Qinghai-Tibetan Plateau. The palaeoclimate changes probably were regulated by the glacial-interglacial alternations.

Journal ArticleDOI
TL;DR: In this article, the concept of effective subsidence capacity is used to determine the maximum volumetric rate of relative sea-level rise, that can be accommodated in the long term, without environmental harm.
Abstract: Subsidence caused by extraction of hydrocarbons and solution salt mining is a sensitive issue in the Netherlands. An extensive legal, technical and organisational framework is in place to ensure a high probability that such subsidence will stay within predefined limits. The key question is: how much subsidence is acceptable and at which rate? And: how can it be reliably assured that (future) subsidence will stay within these limits? To address the issue for the Wadden Sea area, the concept of ‘effective subsidence capacity’ is used. To determine the ‘effective subsidence capacity’, the maximum volumetric rate of relative sea-level rise, that can be accommodated in the long term, without environmental harm, is established first. The volume of sediment that can be transported and deposited by nature into the tidal basin where the subsidence is expected, ultimately determines this ‘limit of acceptable average subsidence rate’. The capability of the tidal basins to ‘capture’ sediment over the lunar cycle period of 18.6 years is the overall rate-determining step. Effective subsidence capacity is then the maximum average subsidence rate available for planning of human activities. It is obtained by subtracting the subsidence volume rate ‘consumed’ by natural relative subsidence in the area (sealevel rise plus natural shallow compaction) from the total long-term acceptable subsidence volume rate limit. In the operational procedure for mining companies, six-years-average expectation values of subsidence rates are used to calculate the maximum allowable production rates. This is done under the provision that production will be reduced or halted if the expected or actual subsidence rate (natural + man induced) is likely to exceed the limit of acceptable subsidence. Monitoring and management schemes ensure that predicted (6-year average) and actual (18.6-year average) subsidence rates stay within the limit of acceptable subsidence rate and that no damage is caused to the protected nature. A GPS based early warning system is used for early detection of unexpected behaviour. In support of SSM (State Supervision of Mines, the government regulator), TNO-AGE (an independent government advisory group) applies an independent Bayesian statistical analysis of all data, as they become available, to calculate the probability of scenario’s under which future subsidence will exceed the defined limits. It is external to the operator’s annual measurement and control loop and ensures that preventive actions can be taken in time in case such scenarios emerge. Regular communication keeps the authorities and the general public informed on the use of the effective subsidence capacity to demonstrate that the actual average subsidence rate stays strictly within the defined bounds and that, from a scientific point of view, there is no reasonable doubt that damage to the tidal system will not occur now or in the future.

Journal ArticleDOI
TL;DR: In this article, the authors argue that in-situ and remote-sensing field observations, laboratory experiments and numerical models need to be the pillars of Earth Scientific research in the Wadden Sea area to construct a meaningful process-based dune-erosion tool.
Abstract: An equilibrium dune-erosion model is used every six years to assess the capability of the most seaward dune row on the Dutch Wadden islands to withstand a storm with a 1 in 10,000 probability for a given year. The present-day model is the culmination of numerous laboratory experiments with an initial cross-shore profile based on the central Netherlands coast. Large parts of the dune coast of the Wadden islands have substantially different dune and cross-shore profile characteristics than found along this central coast, related to the presence of tidal channels, ebb-tidal deltas, beach-plains and strong coastal curvature. This complicated coastal setting implies that the predictions of the dune-erosion model are sometimes doubtful; accordingly, a shift towards a process-based dune-erosion model has been proposed. A number of research findings based on recent laboratory and field studies highlight only few of the many challenges that need to be faced in order to develop and test such a model. Observations of turbulence beneath breaking waves indicate the need to include breaking-wave effects in sand transport equations, while current knowledge of infragravity waves, one of the main sand transporting mechanisms during severe storm conditions, is strongly challenged by laboratory and field observations on gently sloping beaches that are so typical of the Wadden islands. We argue that in-situ and remote-sensing field observations, laboratory experiments and numerical models need to be the pillars of Earth Scientific research in the Wadden Sea area to construct a meaningful process-based dune-erosion tool.

Journal ArticleDOI
TL;DR: In this paper, the internal structure and form of the feature, using ground-penetrating radar (GPR) supported by section logging, borehole records, local landscape morphology and previous description, together indicate that the deposits rest on an eroded surface of Lowestoft Formation diamicton (Anglian Stage) and must therefore be of post-, rather than pre-AnglIAN age.
Abstract: Investigation of landforms on the eastern margin of the East Anglian Fenland basin has demonstrated that they represent a series of glaciofluvial delta-fan and related sediment accumulations (the Skertchly Line) deposited at the margin of an ice-lobe that entered the depression. This ‘Tottenhill glaciation’ dated to ca 160 ka, or the late Wolstonian (= late Saalian) Stage, is equivalent to that during the Netherlands' Drenthe Substage (Marine Isotope Stage 6). Of these landform complexes, an additional site at Shouldham Thorpe, previously nominated as the stratotype for deposits linked to a pre-Anglian Stage, Midlands'-derived Ingham/‘Bytham river’, has now been studied. Examination of the internal structure and form of the feature, using ground-penetrating radar (GPR), supported by section logging, borehole records, local landscape morphology and previous description, together indicate that the deposits rest on an eroded surface of Lowestoft Formation diamicton (Anglian Stage) and must therefore be of post-, rather than pre-Anglian age. The investigations indicate that the Shouldham deposits were laid down as a glacio-marginal subaerial (‘terminoglacial’) fan at the ice-front. In common with other sequences in the Skertchly Line complexes, deposition at Shouldham Thorpe was accompanied by minor ice-front movement, this fan potentially being deposited before retreat to the Tottenhill locality. The implications of the results are discussed.

Journal ArticleDOI
TL;DR: In this article, a combination of the climatic and tectonic models of river incision is able to satisfactorily account for all available data, which is contrary to the common belief that the terraces of the Ardennian rivers were generated by a stepwise general incision of the river profiles.
Abstract: While climatic models of valley downcutting discuss the origin of terrace staircases in valleys of middle Europe within the frame of alternating cold and temperate periods of the Quaternary, other models, starting from a base level fall imposed by an initial tectonic signal, describe the response of the drainage network mainly as the propagation of an erosion wave from the place of base level fall (the margin of the uplifted region) toward the headwaters, the two types of model being rarely confronted. In the Ardennes (West Europe), cosmogenic 10 Be and 26 Al ages have recently been calculated for the abandonment of the Younger Main Terrace (YMT) level, a prominent feature at mid-height of the valleysides marking the starting point of the mid-Pleistocene phase of deep river incision in the massif. These ages show that the terrace has been abandoned diachronically as the result of a migrating erosion wave that started at 0.73 Ma in the Meuse catchment just north of the massif, soon entered the latter, and is still visible in the current long profiles of the Ardennian Ourthe tributaries as knickpoints disturbing their upper reaches. At first glance, these new findings are incompatible with the common belief that the terraces of the Ardennian rivers were generated by a climatically triggered stepwise general incision of the river profiles. However, several details of the terrace staircases (larger than average vertical spacing between the YMT and the next younger terrace, varying number of post-YMT terraces in trunk stream, tributaries and subtributaries) show that a combination of the climatic and tectonic models of river incision is able to satisfactorily account for all available data. The cosmogenic ages of the YMT also point out a particular behaviour of the migrating knickpoints, which apparently propagated on average more slowly in the main rivers than in the tributaries, in contradiction with the relation that makes knickpoint celerity depend directly on drainage area. We tentatively suggest a process accounting for such anomalies in migration rates.

Journal ArticleDOI
TL;DR: In the Op de Schans loess pit near Kesselt (Belgian Limburg) as mentioned in this paper, three Lower Palaeolithic artefacts were recovered from the infill of an ancient erosion gully: a bifacial side-scraper, an atypical biface and a cortical flake.
Abstract: In July 2007 an important archaeological find was made in the Op de Schans loess pit near Kesselt (Belgian Limburg) immediately to the west of the Dutch city of Maastricht. During an archaeological rescue dig, three Lower Palaeolithic artefacts were recovered from the infill of an ancient erosion gully: a bifacial side-scraper, an atypical biface and a cortical flake. Typologically, the artefacts can be classified as Acheulean. In this region, harbouring several such brickyard pits, these are the oldest artefacts yet found, prompting further investigations into the stratigraphic position of the archaeological layer. The Op de Schans pit, which has yielded several Middle Palaeolithic occupation horizons, is located in the middle of an ancient sediment trap. Because of this exceptional geomorphologic situation, multiple ancient sediments have been preserved which elsewhere were entirely removed during subsequent erosion phases. Here five separate loess beds with intercalated interglacial palaeosols are present, overlying the deposits of the River Maas (Meuse). This sequence has been used as a hypothetical framework for elaborating a chronostratigraphic model. The archaeological level in question, discovered at the base of a subsequently infilled erosion gully, can most likely be chronostratigraphically dated to around the start of Marine Isotope Stage 10 (MIS 10), in the era of the Pottenberg discordance (approx. 390 ka). However, the possibility cannot be excluded that the gully in which the artefacts were found dates from an early phase of MIS 12 (approx. 480 ka). The age may in fact be greater still, as the artefacts have been eroded out of their original, primary context and subsequently deposited in the gully. Hypothetically, they may even have been taken up from the Maas loam of the Kesselt Maas terrace (MIS 13) that here is situated directly below the archaeological horizon. This would make the maximum age of the artefacts recovered from the gully around 500 ka.

Journal ArticleDOI
TL;DR: In this paper, a number of case studies illustrate the potential pitfalls when the processes that drive the individual proxies have no common causal significance or dating is not precise enough, and crossing thresholds at different levels and delay times may also hamper direct correlations of proxies.
Abstract: Multi-disciplinarity and multi-proxy approaches are necessary to understand the processes in complex earth systems. However, unlimited and uncontrolled multi-proxy-correlations may be risky. A number of case studies illustrate the potential pitfalls when the processes that drive the individual proxies have no common causal significance or dating is not precise enough. Crossing thresholds at different levels and delay times may also be factors that hamper direct correlations of proxies. Multi-proxy analysis of the intrinsic relationships between proxies in a system is the primary task before any correlation should be made.

Journal ArticleDOI
TL;DR: In this article, a 3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands.
Abstract: 3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the input geological model. An updated and refined palaeo water depth curve and newly refined sediment water interface temperatures (SWIT) are used in the simulation. Basal heat flow is calculated using tectonic models. Two main source rock intervals are defined in the model, Westphalian coal seams and pre-Westphalian shales, which include Namurian and Dinantian successions. The modelling shows that the pre-Westphalian source rocks entered the hydrocarbon generation window in the Late Carboniferous. In the southern and central parts of the study area, the Namurian started producing gas in the Permian. In the north, the Dinantian source rocks appear to be immature. Lower Westphalian sediments started generating gas during the Upper Triassic. Gas generation from Westphalian coal seams increased during the Paleogene and continues in present-day. This late generation of gas from Westphalian coal seams is a likely source for gas accumulations in the area. Westphalian coals might have produced early nitrogen prior to or during the main gas generation occurrence in the Paleogene. Namurian shales may be a source of late nitrogen after reaching maximum gas generating phase in the Triassic. Temperatures reached during the Mid Jurassic were sufficiently high to allow the release of non-organic nitrogen from Namurian shales.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis and update concerning the fluvial terraces of the rivers flowing from the Vosges Massif (Moselle and palaeo Upper-Moseslle-Meuse, Meurthe, Sarre).
Abstract: Abstract This paper aims to provide a synthesis and update concerning the fluvial terraces of the rivers flowing from the Vosges Massif (Moselle and palaeo Upper-Moselle-Meuse, Meurthe, Sarre). The terraces of these rivers are especially well-developed in the marly depressions of the Eastern Paris Basin, justifying an extensive field mapping expedition. The main rivers exhibit terrace staircases with 8 to 13 stepped terrace steps within 100m of the present valley floor. The fluvial sediments mainly originate from the Vosges Massif (crystalline basement and Permo-Triassic sandstones and conglomerates). Another peculiarity of the study area is the presence of several palaeovalleys, typically related to fluvial capture events which occurred to the detriment of the River Meuse. Many palaeomeanders have also been recognised in the Paris Basin (Meuse catchment), and the Rhenish Massif (Moselle and Sarre valleys). Despite some similarities, palaeoenvironmental reconstructions provide evidence for the terrace staircases being distinct from one valley / section of valley to another. These differences are related to the morphostructural framework and to the climate forcing (presence/absence of glaciers in the upper catchment of the rivers). The chronological framework suggests that the terrace sequences and the main capture events may be older than previously thought.

Journal ArticleDOI
TL;DR: In this article, seismic stratigraphic criteria have been used to characterise the evolution of the Southern North Sea (SNS) shelf-delta system that progressively filled the southern North Sea basin during Plio-Pleistocene times.
Abstract: In this study, seismic stratigraphic criteria have been used to characterise the evolution of the Southern North Sea (SNS) shelf-delta system that progressively filled the Southern North Sea basin during Plio-Pleistocene times. Based on the prograding and down-stepping architecture of the shelf-delta sequence it is inferred that deposition occurred during a time of high sediment supply and overall sea-level lowering. During this time the delta slopes failed several times, creating at least 30 internally coherent Mass Transport Deposits (MTDs) mainly grouped in common areas, affecting the same clinoform set and partially sharing the basal shear surface (groups of MTDs). The most important features of the studied MTDs are 1) the dominance of brittle deformation; 2) the small amount of material removal from the headwall domain (lack of completely depleted areas above the basal shear surface); and 3) the lack of an emergent toe domain above the un-failed sediment located basinward, although proper confining geometries for the MTD are not detected. Therefore, the studied MTDs can neither be classified as frontally confined nor as frontally emergent but they are a new intermediate type of submarine landslides which has not been described before. These characteristics suggest that the mass movement ceased relatively soon after initiation of failure. Incisions on top of the MTDs suggest the presence of erosive flows. These flows were probably generated due to a concentration of the drainage in the negative morphology the failure event left behind in the upper sector of the slope. The stronger progradational character of the reflections on top of MTDs confirms a concentration of drainage after the erosional phase too. The interplay between high sediment supply and constant or even decreasing accommodation space (caused by constant or decreasing sealevel) is supposed to be the main precondition for slope instability for most of the MTDs in this study area. Slope failures themselves can also be considered a preconditioning factor by the creation of local very high sedimentation rates (see groups of MTDs). Salt-induced seismicity and storm waves’ effect superimposed on high frequency sea level fall are considered the most important triggering factors.

Journal ArticleDOI
TL;DR: In this paper, a combination of the vertical and horizontal distribution of the conglomerates, their stratigraphic position and analysis of their sedimentological characteristics and the sedimentological context is concluded that the succession must have developed in a fluvial lowland environment where volcanic input contributed significantly to the sediment accumulation.
Abstract: Large conglomerate lenses occur in a fine-grained siliciclastic succession of the Singhbhum craton, eastern India. They overlie an Archaean orthogneiss, from which they are separated by a palaeosol. Neither the conglomerates nor the directly overlying rocks have been dated, but the conglomerate unit is assumed to have also an Archaean age. The conglomerate lenses occur within a succession of pelitic and mafic schists, and the depositional environment of this conglomerate/schist unit had not been clarified thus far. On the basis of a combination of the vertical and horizontal distribution of the conglomerates, their stratigraphic position and analysis of their sedimentological characteristics and the sedimentological context, it is concluded that the succession must have developed in a fluvial lowland environment where volcanic input contributed significantly to the sediment accumulation.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed grain size distributions (GSD), organic carbon content, and aquatic pollen assemblages at 1-cm increments in Lake Fuquene during two full interglacial-glacial cycles.
Abstract: In a ~60 m long record reflecting the period from 284 ka to 27 ka we analysed grain size distributions (GSD), organic carbon content, and aquatic pollen assemblages at 1-cm increments. The 4768-points time series show with ~60 yr resolution the dynamic history of Lake Fuquene (2540 m alt., 4° N lat.) of the northern Andes during two full interglacial-glacial cycles. GSD show proportions of clay, fine silt, coarse silt, and sand evidencing the location of the sediment source (proximal vs distal) in relation to the drilling site, and available energy to transport sediments in the catchment area. Loss-on-ignition (LOI) values reflect estimates of the abundance of organic matter (OM) in the sediments. Aquatic pollen were grouped into assemblages characteristic of deep water, shallow water, swamp, and wet lake shore environments, reflecting a hydrological gradient sensitive for lake level changes. The End-Member Modelling Algorithm (EMMA) showed that 4 end-members (EMs) explain an optimal proportion (70%) of the observed variation. EMMA is able to unmix GSD of lacustrine sediments in a genetically meaningful way allowing EMs to be interpreted in past depositional and environmental settings. Most unexplained variability is located in the fraction of coarse sediment. OM content was estimated on the basis of LOI data and formed a fifth EM that mainly indicates presence of peat. Changes concur with submillennial-scale variability established in other proxies from this record (Groot et al., 2011). Periods with distinct sediment compositions are 284-243 ka (mainly MIS 8), 243-201 ka (mainly MIS 7), 201-179 ka (mainly MIS 7/6 transition), 179-133 ka (mainly MIS 6), 133-111 ka, (mainly MIS 5e) 111-87 ka (mainly MIS 5d-5b), 87-79 ka (mainly MIS 5a), 79-62 ka (mainly MIS 4), and 62-27 ka (MIS 3) showing sedimentological regimes are climate driven.