scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Numerical Methods for Heat & Fluid Flow in 2021"


Journal ArticleDOI
TL;DR: In this paper, the semi-inverse method is used by suitable construction of a trial functional with some free parameters, and a modification of Li-He's variational principle with a free parameter is obtained.
Abstract: It is extremely difficult to establish a variational principle for plasma Kalaawy obtained a variational principle by using the semi-inverse method in 2016, and Li and He suggested a modification in 2017 This paper aims to search for a generalized variational formulation with a free parameter,The semi-inverse method is used by suitable construction of a trial functional with some free parameters,A modification of Li-He’s variational principle with a free parameter is obtained,This paper suggests a new approach to construction of a trial-functional with some free parameters

102 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy-Forchheimer nanofluid saturated lid-driven porous medium were investigated.
Abstract: Purpose The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid saturated lid-driven porous medium. Design/methodology/approach The present paper highlights entropy generation because of mixed convection for a lid-driven porous enclosure filled through a nanoliquid and submitted to a uniform magnetic field. The analysis is achieved using Darcy–Brinkman–Forchheimer technique. The set of partial differential equations governing the considered system was numerically solved using the finite element method. Findings The main observations are as follows. The results indicate that the movement of horizontal wall is an important factor for the entropy generation inside the porous cavity filled through Cu–water nanoliquid. The variation of the thermal entropy generation is linear through NPs volume fraction. The total entropy generation reduces when the Darcy, Hartmann and the nanoparticle volume fraction increase. The porous media and magnetic field effects reduce the total entropy generation. Practical implications Interest in studying thermal interactions by convective flow within a saturating porous medium has many fundamental considerations and has received extensive consideration in the literature because of its usefulness in a large variety of engineering applications, such as the energy storage and solar collectors, crystal growth, food processing, nuclear reactors and cooling of electronic devices, etc. Originality/value By examining the literature, the authors found that little attention has been paid to entropy generation encountered during convection of nanofluids. Hence, this work aims to numerically study entropy generation and heat transport in a lid-driven porous enclosure filled with a nanoliquid.

68 citations


Journal ArticleDOI
TL;DR: In this paper, a least square support vector machine (LS-SVM) was used to predict the convection heat transfer coefficient of nanofluids through circular pipes as an accurate alternative way and draw a clear path for future researches.
Abstract: Convection is one of the main heat transfer mechanisms in both high to low temperature media. The accurate convection heat transfer coefficient (HTC) value is required for exact prediction of heat transfer. As convection HTC depends on many variables including fluid properties, flow hydrodynamics, surface geometry and operating and boundary conditions, among others, its accurate estimation is often too hard. Homogeneous dispersion of nanoparticles in a base fluid (nanofluids) that found high popularities during the past two decades has also increased the level of this complexity. Therefore, this study aims to show the application of least-square support vector machines (LS-SVM) for prediction of convection heat transfer coefficient of nanofluids through circular pipes as an accurate alternative way and draw a clear path for future researches in the field.,The proposed LS-SVM model is developed using a relatively huge databank, including 253 experimental data sets. The predictive performance of this intelligent approach is validated using both experimental data and empirical correlations in the literature.,The results show that the LS-SVM paradigm with a radial basis kernel outperforms all other considered approaches. It presents an absolute average relative deviation of 2.47% and the regression coefficient (R2) of 0.99935 for the estimation of the experimental databank. The proposed smart paradigm expedites the procedure of estimation of convection HTC of nanofluid flow inside circular pipes.,Therefore, the focus of the current study is concentrated on the estimation of convection HTC of nanofluid flow through circular pipes using the LS-SVM. Indeed, this estimation is done using operating conditions and some simply measured characteristics of nanoparticle, base fluid and nanofluid.

67 citations


Journal ArticleDOI
TL;DR: In this article, a semi-analytical/numerical method, the differential transform method, is used to obtain solutions for the system of the nonlinear differential governing equations, which may be adapted to solve a variety of nonlinear problems in simple geometries, as it was confirmed by comparisons between the results using this method and those of a fully numerical scheme.
Abstract: The purpose of this paper is to examine the electro-magnetohydrodynamic behavior of a third-grade non-Newtonian fluid, flowing between a pair of parallel plates in the presence of electric and magnetic fields. The flow medium between the plates is porous. The effects of Joule heating and viscous energy dissipation are studied in the present study.,A semi-analytical/numerical method, the differential transform method, is used to obtain solutions for the system of the nonlinear differential governing equations. This solution technique is efficient and may be adapted to solve a variety of nonlinear problems in simple geometries, as it was confirmed by comparisons between the results using this method and those of a fully numerical scheme.,The results of the computations show that the Darcy–Brinkman–Forchheimer parameter and the third-grade fluid model parameter retards, whereas both parameters have an inverse effect on the temperature profile because the viscous dissipation increases. The presence of the magnetic field also enhances the temperature profile between the two plates but retards the velocity profile because it generates the opposing Lorenz force. A graphical comparison with previously published results is also presented as a special case of this study.,The obtained results are new and presented for the first time in the literature.

58 citations


Journal ArticleDOI
TL;DR: In this article, a three-dimensional convective heat transfer properties evaluation of magnetohydrodynamics nanofluid flow, comprising motile oxytactic microorganisms and nanoparticles, passing through a rotating cone, is presented.
Abstract: The purpose of the study is to indicate a three-dimensional convective heat transfer properties evaluation of magnetohydrodynamics nanofluid flow, comprising motile oxytactic microorganisms and nanoparticles, passing through a rotating cone,The imposed technique for solving the governing equations is the Runge–Kutta fifth-order method The main point of this survey is to diagnosis the influence of diverse factors on velocity, temperature distributions and concentration profile Furthermore, appending the magnetic field, thermal radiation and viscous dissipation in calculations; also, simultaneous involvement of heat absorption and excretion has been represented as novelties,The results elucidate that by changing the Peclet number from 1 to 2, the dimensionless concentration of the microorganisms has been diminished by about 3437% In addition, variation of the magnetic parameter from 0 to 1 has been resulted in reducing the temperature distribution by about 311%,Recently, attention has been absorbed to adding the motile microorganisms to nanofluid for enhancement of heat transfer and avoiding aggregation of particles In this regard, the hydrothermal flow of microorganisms has been investigated in this study

54 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2-Fe3O4 hybrid nanoparticles.
Abstract: The purpose of this paper is to investigate natural convection in a porous wavy-walled enclosure that is including a cylinder cavity in the middle of it and filled with a hybrid nanofluid contains 1-Butanol as the base fluid and MoS2–Fe3O4 hybrid nanoparticles.,The domain of interest is bounded by constant temperature horizontal corrugated surfaces and isothermal vertical flat surfaces. The numerical outputs are explained in the type of isotherms, streamline and average Nusselt number with variations of the Rayleigh number, Hartmann number, nanoparticle shape factor and porosity of the porous medium. For solving the governing equations, the finite element method has been used.,The results show that Nuave is proportional to Rayleigh and nanoparticle shape factor directly as well as it has an inverse relation with Hartmann and porosity. The obtained results reveal that the shape factor parameter has a significant effect on the heat transfer performance, which shows a 55.44% contribution on the average Nusselt number.,As a novelty, to maximize the heat transfer performance in a corrugated walls enclosure, the optimal parameters have intended by using the response surface and Taguchi methods. Additionally, an accurate correlation for the average Nusselt number is developed with sensibly great precision.

53 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explore magnetohydrodynamic (MHD) thermo-bioconvection of oxytactic microorganisms in multi-physical directions addressing thermal gradient, lid motion, porous substance and magnetic field collectively using a typical differentially heated two-sided lid-driven cavity.
Abstract: This study aims to explore magnetohydrodynamic (MHD) thermo-bioconvection of oxytactic microorganisms in multi-physical directions addressing thermal gradient, lid motion, porous substance and magnetic field collectively using a typical differentially heated two-sided lid-driven cavity. The consequences of a range of pertinent parameters on the flow structure, temperature, oxygen isoconcentration and microorganisms’ isoconcentration are examined and explained in great detail.,Two-dimensional governing equations in a two-sided lid-driven porous cavity heated differentially and packed with oxytactic microorganisms under the influence of the magnetic field are solved numerically using the finite volume method-based computational fluid dynamics code. The evolved flow physics is analyzed assuming a steady laminar incompressible Newtonian flow within the validity of the Boussinesq approximation. The transport of oxytactic microorganisms is formulated by augmenting the continuum model.,The mechanisms involved with MHD-mixed thermo-bioconvection could have potential benefits for industrial exploitation. The distributions of fluid flow, temperature, oxygen and motile microorganisms are markedly modified with the change of convection regime. Both speed and direction of the translating walls significantly influence the concentration of the motile microorganisms. The concentration of oxygen and motile microorganisms is found to be higher at the upper portion of the cavity. The overall patterns of the fluid flow, temperature and the oxygen and microorganism distributions are markedly affected by the increase of magnetic field strength.,The concept of the present study could be extended to other areas of bioconvection in the presence of gravity, light or chemical attraction.,The findings of the present study could be used to multi-physical applications like biomicrosystems, pollutant dispersion in aquifers, chemical catalytic converters, geothermal energy usage, petroleum oil reservoirs, enhanced oil recovery, fuel cells, thermal energy storage and others.,The MHD-mixed thermo-bioconvection of oxytactic microorganisms is investigated under different parametric conditions. The effect of pertinent parameters on the heat and mass transfers are examined using the Nusselt number and Sherwood number.

39 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the Darcy-Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and gyrotactic motile microorganism features.
Abstract: The purpose of this study is to discuss the Darcy–Forchheimer nanoliquid bio-convection flow by stretching cylinder/plate with modified heat and mass fluxes, activation energy and gyrotactic motile microorganism features.,The proposed flow model is based on flow rate, temperature of nanomaterials, volume fraction of nanoparticles and gyrotactic motile microorganisms. Heat and mass transport of nanoliquid is captured by the usage of popular Buongiorno relation, which allows us to evaluate novel characteristics of thermophoresis diffusion and Brownian movement. Additionally, Wu’s slip (second-order slip) mechanisms with double stratification are incorporated. For numerical and graphical results, the built-in bvp4c technique in computational software MATLAB along with shooting technique is used.,The influence of key elements is illustrated pictorially. Velocity decays for higher magnitude of first- and second-order velocity slips and bioconvection Rayleigh number. The velocity of fluid has an inverse relation with mixed convection parameter and local inertia coefficient. Temperature field enhances with the increase in estimation of thermal stratification Biot number and radiation parameter. A similar situation for concentration field is observed for mixed convection parameter and concentration relaxation parameter. Microorganism concentration profile decreases for higher values of bioconvection Lewis number and Peclet number. A detail discussion is given to see how the graphical aspects justify the physical ones.,To the best of the authors’ knowledge, original research work is not yet available in existing literature.

32 citations


Journal ArticleDOI
TL;DR: In this article, Mohand transform is used to solve the fractional view of the Newell-Whitehead-Segel Equation (NWSE) with different positive integers.
Abstract: Purpose This study aims that very lately, Mohand transform is introduced to solve the ordinary and partial differential equations (PDEs). In this paper, the authors modify this transformation and associate it with a further analytical method called homotopy perturbation method (HPM) for the fractional view of Newell–Whitehead–Segel equation (NWSE). As Mohand transform is restricted to linear obstacles only, as a consequence, HPM is used to crack the nonlinear terms arising in the illustrated problems. The fractional derivatives are taken into the Caputo sense. Design/methodology/approach The specific objective of this study is to examine the problem which performs an efficient role in the form of stripe orders of two dimensional systems. The authors achieve the multiple behaviors and properties of fractional NWSE with different positive integers. Findings The main finding of this paper is to analyze the fractional view of NWSE. The obtain results perform very good in agreement with exact solution. The authors show that this strategy is absolutely very easy and smooth and have no assumption for the constriction of this approach. Research limitations/implications This paper invokes these two main inspirations: first, Mohand transform is associated with HPM, secondly, fractional view of NWSE with different positive integers. Practical implications In this paper, the graph of approximate solution has the excellent promise with the graphs of exact solutions. Social implications This paper presents valuable technique for handling the fractional PDEs without involving any restrictions or hypothesis. Originality/value The authors discuss the fractional view of NWSE by a Mohand transform. The work of the present paper is original and advanced. Significantly, to the best of the authors’ knowledge, no such work has yet been published in the literature.

30 citations


Journal ArticleDOI
TL;DR: A modified Chun-Hui He’s algorithm for solving the nonlinear algebraic models exist in various area and behaves better and efficient, whereas the current existing algorithm fails or slows in the considered test examples.
Abstract: Purpose This study aims to introduce a modern higher efficiency predictor–corrector iterative algorithm. Design/methodology/approach Furthermore, the efficiency of new algorithm is analyzed on the based on Chun-Hui He’s iteration method. Findings In comparison with the current robust algorithms, the newly establish algorithm behaves better and efficient, whereas the current existing algorithm fails or slows in the considered test examples. Practical implications The modified Chun-Hui He’s algorithm has great practical implication in numerous real-life challenges in different area of engineering, such as Industrial engineering, Civil engineering, Electrical engineering and Mechanical engineering. Originality/value The paper presents a modified Chun-Hui He’s algorithm for solving the nonlinear algebraic models exist in various area.

29 citations


Journal ArticleDOI
TL;DR: In this article, three-dimensional cylindrical enclosures have been assumed to receive the results of entropy generation occurring due to viscous dissipation, heat transfer of nanofluid and mass concentration of nanoparticles through peristaltic pumping.
Abstract: Entropy generation in nanofluids with peristaltic scheme occupies a primary consideration in the sense of its application in clinical, as well as the industrial field in terms of improved thermal conductivity of the original fluid. Three-dimensional cylindrical configurations are the most realistic and commonly used geometries which incorporate most of the experimental equipment. In the current study, three-dimensional cylindrical enclosures have been assumed to receive the results of entropy generation occurring due to viscous dissipation, heat transfer of nanofluid and mass concentration of nanoparticles through peristaltic pumping. Applications of the study can be found in peristaltic micro-pumps and novel drug delivery mechanism in pharmacological engineering.,The equations of interest have been structured under physical constraints of lubrication theory and dimensionless strategy. Finalized relations involve highly complicated partial differential equations whose solutions are tabulated through some perturbation procedure and expression of pressure rise is manipulated by a numerical technique through built-in command NIntegrate on Mathematical tool “Mathematica.”,It is evaluated that entropy production goes linear with the greater magnitudes of Brownian motion but inverse characteristics have been sorted against thermophoresis factor.,To the best of authors’ knowledge, this study does not exist in literature yet and it contains a new innovative idea.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media saturated with Cu-Al2O3/water hybrid nanofluid and heated at the left wavy wall.
Abstract: Purpose The aims of this study is to numerically investigate the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media saturated with Cu–Al2O3/water hybrid nanofluid and heated at the left wavy wall. The thermophysical phenomena are explored thoroughly by varying the amplitude (λ) and undulation (n) of the wavy wall and the inclination of the enclosure (γ) along with other pertinent physical parameters. Darcy–Rayleigh number (Ram), Darcy number (Da), Hartmann number (Ha) and nanoparticle volumetric fraction (ϕ). The effect of all parameters has been analyzed and represented by using heatlines, isotherms, streamlines, average Nusselt number and local Nusselt number. Design/methodology/approach The finite volume method is used to work out the transport equations coupled with velocity, pressure and temperature subjected to non-uniform staggered grid structure after grid-sensitivity analysis by an indigenous computing code and the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The solution process is initiated following an iterative approach through the alternate direction implicit sweep technique and the tridiagonal matrix algorithm (TDMA) algorithm. The iterative process is continued until successive minimization of the residuals (<1e-8) for the governing equations. Findings This study reveals that the increase in the heating surface area does not always favor heat transfer. An increase in the undulation amplitude enhances the heat transfer; however, there is an optimum value of undulation of the wavy wall for this. The heat transfer enhancement because of the wall curvature is revealed at higher Ram, lower Da and Ha and lower volume fraction of nanoparticles. In general, this augmentation is optimum for four undulations of the wavy wall with an amplitude of λ = 0.3. The heat transfer enhancement can be more at the cavity inclination γ = 45°. Research limitations/implications The technique of this investigation could be used in other multiphysical areas involving partial porous layers, conducting objects, different heating conditions, wall motion, etc. Practical implications This study is to address MHD thermo-fluid phenomena of Cu–Al2O3/water-based hybrid nanofluid flow through a non-Darcian porous wavy cavity at different inclinations. The amplitude and number of undulations of the wavy wall, permeability of the porous medium, magnetic field intensity, nanoparticle volumetric fraction and inclinations of the enclosure play a significant role in the heat transfer process. This analysis and the findings of this work can be useful for the design and control of similar thermal systems/devices. Originality/value Many researchers have examined the problem of buoyancy-induced free convection in a wavy-porous cavity packed with regular fluids or nanofluids. However, the effect of magnetic fields along with the amplitude (λ) at different undulations (n) of the heated wavy wall of an inclined enclosure is not attended so far to understand the transport mechanisms. Most often, the evolutions of the thermo-fluid phenomena in such complex geometries invoking different multiphysics are very intricate. Numerical implementations for simulations and subsequent post-processing of the results are also challenging.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field.
Abstract: Purpose This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field. The heating is provided through a bell-shaped curved bottom wall heated isothermally. The effects of the peak height of the curved bottom wall, bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le) and Grashof number (Gr) on the flow structure, temperature and the iso-concentrations of oxygen and microorganisms are examined and explained systematically. The local and global, characteristics of heat transfer and oxygen concentration, are estimated through the Nusselt number (Nu) and Sherwood number (Sh), respectively. Design/methodology/approach The governing equations of continuity, momentum, energy and additionally consisting of species transport equations for oxygen concentration and population density of microorganisms, are discretized by the finite volume method. The evolved linearized algebraic equations are solved iteratively through the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The computation domain has meshed in non-uniform staggered grids. The entire computations are carried out through an in-house developed code written in FORTRAN following the SIMPLE algorithm. The third-order upwind and second-order central difference schemes are used for handling the advection and diffusion terms, respectively. The convergence criterion for the iterative process of achieving the final solution is set as 10–8 and 10–10, respectively, for the maximum residuals and the mass defect. Findings The results show that the flow and temperature distribution along with the iso-concentrations of oxygen and microorganisms are markedly affected by the curvature of the bottom wall. A secondary circulation is developed in the cavity that changes the flow physics significantly. The Nu increases with the peak height of the curved bottom wall and Da; however, it decreases with Ha and Rb. The Sh increases with Da but decreases with Ha and the peak height of the curved wall. Research limitations/implications A similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity, light, etc. Practical implications The outcomes of this investigation could be used in diverse fields of multi-physical applications such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery. Originality/value The insights of bioconvection of oxytactic microorganisms using a curved bottom surface along with other physical issues such as nanofluid, porous substance and magnetic field are addressed systematically and thoroughly.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the flow and heat transfer of a hybrid nanofluid through an exponentially stretching/shrinking sheet along with mixed convection and Joule heating.
Abstract: This study aims to investigate the flow and heat transfer of a hybrid nanofluid through an exponentially stretching/shrinking sheet along with mixed convection and Joule heating. The nanoparticles alumina (Al2O3) and copper (Cu) are suspended into a base fluid (water) to form a new kind of hybrid nanofluid (Al2O3-Cu/water). Also, the effects of constant mixed convection parameter and Joule heating are considered.,The governing partial differential equations are transformed into ordinary differential equations (ODEs) using appropriate similarity transformations. The transformed nonlinear ODEs are solves using the bvp4c solver available in MATLAB software. A comparison of the present results shows a good agreement with the published results.,Dual solutions for hybrid nanofluid flow obtained for a specific range of the stretching/shrinking parameter values. The values of the skin friction coefficient increases but the local Nusselt number decreases for the first solution with the increasing of the magnetic parameter. Enhancing copper volume fraction and Eckert number reduces the surface temperature, which intimates the decrement of heat transfer rate for the first and second solutions for the stretching/shrinking sheet. In detail, the first solution results show that when the Eckert number increases as 0.1, 0.4 and 0.7 at λ = 1.5, the temperature variations reduced to 10.686840, 10.671419 and 10.655996. While in the second solution, keeping the same parameters temperature variation reduced to 9.750777, 9.557349 and 9.364489, respectively. On the other hand, the results indicate that the skin friction coefficient increases with copper volume fraction. This study shows that the thermal boundary layer thickness rises due to the rise in the solid volume fraction. It is also observed that the magnetic parameter, copper volume fraction and Eckert number widen the range of the stretching/shrinking parameter for which the solution exists.,In practice, the investigation on the flow and heat transfer of a hybrid nanofluid past an exponentially stretching/shrinking sheet with mixed convection and Joule heating is crucial and useful. The problems related to hybrid nanofluid have numerous real-life and industrial applications, such as microelectronics, manufacturing, naval structures, nuclear system cooling, biomedical and drug reduction.,In specific, this study focuses on increasing thermal conductivity using a hybrid nanofluid mathematical model. The novelty of this study is the use of natural mixed convection and Joule heating in a hybrid nanofluid. This paper can obtain dual solutions. The authors declare that this study is new, and there is no previous published work similar to the present study.

Journal ArticleDOI
TL;DR: In this article, the effect of electroosmotic forces on boundary layer Williamson fluid model containing a gyrotactic microorganism through a non-Darcian flow (Forchheimer model) is investigated.
Abstract: The study of the electro-osmotic forces (EOF) in the flow of the boundary layer has been a topic of interest in biomedical engineering and other engineering fields. The purpose of this paper is to develop an innovative mathematical model for electro-osmotic boundary layer flow. This type of fluid flow requires sophisticated mathematical models and numerical simulations.,The effect of EOF on the boundary layer Williamson fluid model containing a gyrotactic microorganism through a non-Darcian flow (Forchheimer model) is investigated. The problem is formulated mathematically by a system of non-linear partial differential equations (PDEs). By using suitable transformations, the PDEs system is transformed into a system of non-linear ordinary differential equations subjected to the appropriate boundary conditions. Those equations are solved numerically using the finite difference method.,The boundary layer velocity is lower in the case of non-Newtonian fluid when it is compared with that for a Newtonian fluid. The electro-osmotic parameter makes an increase in the velocity of the boundary layer. The boundary layer velocity is lower in the case of non-Darcian fluid when it is compared with Darcian fluid and as the Forchheimer parameter increases the behavior of the velocity becomes more closely. Entropy generation decays speedily far away from the wall and an opposite effect occurs on the Bejan number behavior.,The present outcomes are enriched to give valuable information for the research scientists in the field of biomedical engineering and other engineering fields. Also, the proposed outcomes are hopefully beneficial for the experimental investigation of the electroosmotic forces on flows with non-Newtonian models and containing a gyrotactic microorganism.

Journal ArticleDOI
TL;DR: In this article, the steady laminar magnetohydrodynamics (MHD) flow of a magnesium oxide-silver/water hybrid nanofluid along a horizontal slim needle with thermal radiation was studied by considering dual solutions.
Abstract: Purpose The purpose of this paper is to study the steady laminar magnetohydrodynamics (MHD) flow of a magnesium oxide-silver/water hybrid nanofluid along a horizontal slim needle with thermal radiation by considering dual solutions. Design/methodology/approach It is assumed that the needle can move in the same or opposite direction of the free stream. Also the solid phase and fluid phase are in thermal equilibrium. The basic partial differential equations become dimensionless using a similarity transformation method. Moreover, problem coding is accomplished using the finite difference method. The emerging parameters are nanoparticles mass (0–40 gr), base fluid mass (100 gr), needle’s size (0.001–0.2), magnetic field parameter, velocity ratio parameter, radiation parameter and Prandtl number (6.2). Findings With help of the stability analysis, it is shown that always the first solutions are physically stable. Results indicate that the magnetic parameter and the second nanoparticle’s mass limit the range of the velocity ratio parameter for which the solution exists. Besides, the magnetic parameter leads to decrease of quantities of engineering interest, i.e. skin friction coefficient and local Nusselt number. Originality/value To the best of the authors’ knowledge, no one has ever attempted to study the present problem through a mass-based model for hybrid nanofluid. Moreover, the dual solutions for the problem are new. Indeed, the results of this paper are purely original and the numerical achievements were never published up to now. Finally, the authors expect that the present investigation would be useful in hot-wire anemometer or shielded thermocouple for measuring the velocity of the wind, etc.

Journal ArticleDOI
TL;DR: In this paper, a variational variational iteration transform method is proposed to solve the fractal model based on the variational theory and fractal two-scales transform method.
Abstract: Purpose The purpose of this paper is the coupled nonlinear fractal Schrödinger system is defined by using fractal derivative, and its variational principle is constructed by the fractal semi-inverse method. The approximate analytical solution of the coupled nonlinear fractal Schrödinger system is obtained by the fractal variational iteration transform method based on the proposed variational theory and fractal two-scales transform method. Finally, an example illustrates the proposed method is efficient to deal with complex nonlinear fractal systems. Design/methodology/approach The coupled nonlinear fractal Schrödinger system is described by using the fractal derivative, and its fractal variational principle is obtained by the fractal semi-inverse method. A novel approach is proposed to solve the fractal model based on the variational theory. Findings The fractal variational iteration transform method is an excellent method to solve the fractal differential equation system. Originality/value The author first presents the fractal variational iteration transform method to find the approximate analytical solution for fractal differential equation system. The example illustrates the accuracy and efficiency of the proposed approach.

Journal ArticleDOI
TL;DR: The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components as mentioned in this paper, which can be used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells.
Abstract: The purpose of this study is to perform a detailed review on the numerical modeling of multiphase and multicomponent flows in microfluidic system using phase-field method. The phase-field method is of emerging importance in numerical computation of transport phenomena involving multiple phases and/or components. This method is not only used to model interfacial phenomena typical to multiphase flows encountered in engineering and nature but also turns out to be a promising tool in modeling the dynamics of complex fluid-fluid interfaces encountered in physiological systems such as dynamics of vesicles and red blood cells). Intrinsically, a priori unknown topological evolution of interfaces offers to be the most concerning challenge toward accurate modeling of moving boundary problems. However, the numerical difficulties can be tackled simultaneously with numerical convenience and thermodynamic rigor in the paradigm of the phase field method.,The phase-field method replaces the macroscopically sharp interfaces separating the fluids by a diffuse transition layer where the interfacial forces are smoothly distributed. As against the moving mesh methods (Lagrangian) for the explicit tracking of interfaces, the phase-field method implicitly captures the same through the evolution of a phase-field function (Eulerian). In contrast to the deployment of an artificially smoothing function for the interface as used in the volume of a fluid or level set method, however, the phase-field method uses mixing free energy for describing the interface. This needs the consideration of an additional equation for an order parameter. The dynamic evolution of the system (equation for order parameter) can be described by Allen–Cahn or Cahn–Hilliard formulation, which couples with the Navier–Stokes equation with the aid of a forcing function that depends on the chemical potential and the gradient of the order parameter.,In this review, first, the authors discuss the broad motivation and the fundamental theoretical foundation associated with phase-field modeling from the perspective of computational microfluidics. They subsequently pinpoint the outstanding numerical challenges, including estimations of the model-free parameters. They outline some numerical examples, including electrohydrodynamic flows, to demonstrate the efficacy of the method. Finally, they pinpoint various emerging issues and futuristic perspectives connecting the phase-field method and computational microfluidics.,This paper gives unique perspectives to future directions of research on this topic.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the flow impinging on a stagnation point of a shrinking cylinder subjected to prescribed surface heat flux in Al2O3-Cu/water hybrid nanofluid.
Abstract: This study aims to investigate the flow impinging on a stagnation point of a shrinking cylinder subjected to prescribed surface heat flux in Al2O3-Cu/water hybrid nanofluid.,Using similarity variables, the similarity equations are obtained and then solved using bvp4c in MATLAB. The effects of several physical parameters on the skin friction and heat transfer rate, as well as the velocity and temperature profiles are analysed and discussed.,The outcomes show that dual solutions are possible for the shrinking case, in the range λc<λ<−1, where λc is the bifurcation point of the solutions. Meanwhile, the solution is unique for λ≥−1. Besides, the boundary layer is detached on the surface at λc, where the value of λc is affected by the hybrid nanoparticle φhnf and the curvature parameter γ. Moreover, the friction and the heat transfer on the surface increase with the rising values φhnf and γ. Finally, the temporal stability analysis shows that the first solution is stable in the long run, whereas the second solution is not.,The present work considers the problem of stagnation point flow impinging on a shrinking cylinder containing Al2O3-Cu/water hybrid nanofluid, with prescribed surface heat flux. This paper shows that two solutions are obtained for the shrinking case. Further analysis shows that only one of the solutions is stable as time evolves.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer's effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy.
Abstract: The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy.,The presented flow problem consists of the flow, heat and mass transportation of hybrid nanofluids. This model is featured with Casson fluid model and Darcy-Forchheimer model. Heat and mass transportations are represented with Cattaneo-Christov double diffusion and viscous dissipation models. Multiple slip (velocity, thermal and solutal) mechanisms are adopted. Arrhenius activation energy is considered. For graphical and numerical data, the bvp4c scheme in MATLAB computational tool along with the shooting method is used.,Amplifying curvature parameter upgrades the fluid velocity while that of porosity parameter and velocity slip parameter whittles down it. Growing mixed convection parameter, curvature parameter, Forchheimer number, thermally stratified parameter intensifies fluid temperature. The rise in curvature parameter and porosity parameter enhances the solutal field distribution. Surface viscous drag gets controlled with the rising of the Casson parameter which justifies the consideration of the Casson model. Entropy generation number and Bejan number upgrades due to growth in diffusion parameter while that enfeeble with a hike in temperature difference parameter.,To the best of the authors’ knowledge, this research study is yet to be available in the existing literature.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of using hybrid nanofluid and number of plates on the performance of a plate heat exchanger and found that using both nanoflids raised the thermal performance of all tested exchangers.
Abstract: Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.

Journal ArticleDOI
TL;DR: In this paper, two integrable shallow water wave equations with constant and time-dependent coefficients were developed, and the authors used the simplified Hirota's method and lump technique for determining multiple soliton solutions and lump solutions as well.
Abstract: This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives multiple soliton solutions and a class of lump solutions which are rationally localized in all directions in space.,The author uses the simplified Hirota’s method and lump technique for determining multiple soliton solutions and lump solutions as well. The author shows that the developed (2+1)- and (3+1)-dimensional models are completely integrable in in the Painlene sense.,The paper reports new Painleve-integrable extended equations which belong to the shallow water wave medium.,The author addresses the integrability features of this model via using the Painleve analysis. The author reports multiple soliton solutions for this equation by using the simplified Hirota’s method.,The obtained lump solutions include free parameters; some parameters are related to the translation invariance and the other parameters satisfy a non-zero determinant condition.,The work presents useful algorithms for constructing new integrable equations and for the determination of lump solutions.,The paper presents an original work with newly developed integrable equations and shows useful findings of solitary waves and lump solutions.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated magnetohydrodynamic (MHD) bioconvection caused by the swimming of oxytactic microorganisms in a linearly heated square cavity filled with porous media and Cu-water nanofluid.
Abstract: Purpose The purpose of this study is to address magnetohydrodynamic (MHD) bioconvection caused by the swimming of oxytactic microorganisms in a linearly heated square cavity filled with porous media and Cu–water nanofluid. The effects of different multiphysical aspects are demonstrated using local distributions as well as global quantities for fluid flow, temperature, oxygen concentration and microorganisms population. Design/methodology/approach The coupled transport equations are converted into the nondimensional partial differential equations, which are solved numerically using a finite volume-based computing code. The flow of Cu–water nanofluid through the pores of porous media is formulated following the Brinkman–Forchheimer–Darcy model. The swimming of oxytactic microorganisms is handled following a continuum model. Findings The analysis of transport phenomena of bioconvection is performed in a linearly heated porous enclosure containing Cu–water nanofluid and oxytactic microorganisms under the influence of magnetic fields. The application of such a system could have potential impacts in diverse fields of engineering and science. The results show that the flow and temperature distribution along with the isoconcentrations of oxygen and microorganisms is markedly affected by the involved governing parameters. Research limitations/implications Similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity and light. Practical implications The outcomes of this investigation could be used in diverse fields of multiphysical applications, such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery. Originality/value The insight of the linear heating profile reveals a special attribute of simultaneous heating and cooling zones along the heated side. With such an interesting feature, the MHD bioconvection of oxytactic microorganisms in nanofluid-filled porous substance is not reported so far.

Journal ArticleDOI
TL;DR: In this article, the effect of fluid flow path on the thermal, electrical and fluid flow characteristics of a PV thermal (PVT) collector is investigated, and three alternatives for flow paths, namely, direct, curved and spiral for coolant flow, are considered, and a numerical model to simulate the system performance is developed.
Abstract: This study aim to use the finite volume method to solve differential equations related to three-dimensional simulation of a solar collector. Modeling is done using ANSYS-fluent software program. The investigation is done for a photovoltaic (PV) solar cell, with the dimension of 394 × 84 mm2, which is the aluminum type and receives the constant heat flux of 800 W.m−2. Water is also used as the working fluid, and the Reynolds number is 500.,In the present study, the effect of fluid flow path on the thermal, electrical and fluid flow characteristics of a PV thermal (PVT) collector is investigated. Three alternatives for flow paths, namely, direct, curved and spiral for coolant flow, are considered, and a numerical model to simulate the system performance is developed.,The results show that the highest efficiency is achieved by the solar cell with a curved fluid flow path. Additionally, it is found that the curved path’s efficiency is 0.8% and 0.5% higher than that of direct and spiral paths, respectively. Moreover, the highest pressure drop occurs in the curved microchannel route, with around 260 kPa, which is 2% and 5% more than the pressure drop of spiral and direct.,To the best of the authors’ knowledge, there has been no study that investigates numerically heat transfer, fluid flow and electrical performance of a PV solar thermal cell, simultaneously. Moreover, the effect of the microchannel routes which are considered for water flow has not been considered by researchers so far. Taking all the mentioned points into account, in this study, numerical analysis on the effect of different microchannel paths on the performance of a PVT solar collector is carried. The investigation is conducted for the Reynolds number of 500.



Journal ArticleDOI
TL;DR: In this article, the effects of spherical and non-spherical shapes of silver nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption were examined.
Abstract: In heat transfer, fluids and nanoparticles can provide new innovative technologies with potential to adapt the heat transfer fluid’s thermal properties through control over particle size, shape and others. This paper aims to examine the effects of spherical and non-spherical (cylinder, disk, platelets, etc.) shapes of silver (Ag) nanoparticles on heat transfer enhancement and inherent irreversibility in hydromagnetic water base nanoliquid flow over a convectively heated stretching sheet with heat generation/absorption.,Applying suitable similarity constraints, the model partial differential equations are transformed into a set of nonlinear ordinary differential equations. Solutions are obtained analytically via optimal homotopy asymptotic method (OHAM) and numerically via shooting technique coupled with the Runge-Kutta-Fehlberg (RK-F) method.,The impact of Ag nanoparticle’s shape along with other germane factors, such as Biot number, magnetic field, solid volume fraction and heat source/sink on velocity and thermal profiles, Nusselt number, skin friction coefficient, heat transfer enhancement, rate of entropy generation and irreversibility ratio, are scrutinized via graphical simulations and discussed. This study revealed that cylindrical shape Ag nanoparticles generate high entropy and fluid friction irreversibility, whereas disk shape Ag nanoparticles exhibit high transfer enhancement rate. Moreover, a boost in magnetic field intensity, volume-fraction parameter and Biot number enhances the thermal boundary layer thickness.,The main objective of this work is to examine the different Ag nanoparticles shape effects on the heat transfer enhancement and inherent irreversibility owing to hydromagnetic nanoliquid flow past a convectively heated stretching sheet with heat source/sink, which has not been yet studied. It is hope that this study will bridge the gap in the present literature and serve as impetus to scholars, engineers and industries for more exploration in this direction. The intrinsic nonlinearity of the model equations precludes its exact solution; hence, OHAM and shooting technique coupled with the RK-F method have been used to numerically tackle the problem. Pertinent results are discussed quantitatively and displayed graphically and in tabular form.

Journal ArticleDOI
TL;DR: In this paper, the authors considered the heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface, and the homotopy analysis method (HAM) was used to obtain the solution.
Abstract: Purpose This paper aims to consider the heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface. The innovative characteristics of this paper include electro-magnetohydrodynamic (EMHD) term, viscous dissipation, Joule heating and heat absorption\\omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the single wall and multi-wall carbon nanotubes (SWCNTs and MWCNTs) in the blood for the testing purpose of heat transfer and drug deliveries. The experimental value of the Prandtl number used for the blood is 21 from the available literature and very large as compared to the Prandtl number of the other base fluids. Appropriate transformations are incorporated to convert the modeled partial differential equations into the nonlinear ordinary differential equations. The homotopy analysis method (HAM) is used to obtain the solution. The explanation for velocity, energy and entropy are exposed under the influence of various parameters such as E, M, k, Q, S and Ec. The numerical values are calculated and summarized for dimensionless Cf and Nu. Design/methodology/approach In this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics of this paper include EMHD term, viscous dissipation, Joule heating and heat absorption\\omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in the blood for the testing purpose of heat transfer and drug deliveries. The experimental value of the Prandtl number used for the blood is 21 from the available literature and very large as compared to the Prandtl number of the other base fluids. Appropriate transformations are incorporated to convert the modeled partial differential equations into the nonlinear ordinary differential equations. The HAM is used to obtain the solution. The explanation for velocity, energy and entropy are exposed under the influence of various parameters such as E, M, k, Q, S and Ec. The numerical values are calculated and summarized for dimensionless Cf and Nu. Findings The explanation for velocity, energy and entropy are exposed and the flow against various influential factors is discussed graphically. The numerical values are calculated and summarized for dimensionless In addition, the current study is compared for various values of to that published literature and an impressive agreement in terms of finding is reported. It has also been noticed that the and factors retards the hybrid nanofluid flow, while the temperature of fluid becomes upsurges by the rise in these factors. Originality/value This is examined while evaluating the previously discussed publications that study on EMHD aspects of magnetized Casson type hybrid nanofluid via entropy generation research is innovative but also acknowledging that the couple stress model challenged bilaterally on stretching surface has not yet been studied. So, there is an ongoing attempt to bridge such a space.

Journal ArticleDOI
TL;DR: In this article, the flow and heat transfer of a hybrid nanofluid composed of kerosene and ZnO-Al2O3 nanoparticles (NPs) is investigated.
Abstract: Purpose The flow and heat transfer of a hybrid nanofluid composed of kerosene and ZnO-Al2O3 nanoparticles (NPs) is investigated. The flow occurs over complex surfaces with stretching and shrinking features. The base fluid is electrically conducting, and an external magnetic field is added so that the nanofluid and the electric field are in equilibrium. Irrotational flow with viscous dissipation effects is considered. Design/methodology/approach The governing equations of the system are formulated, and a similarity transformation is used to convert the system of equations into ordinary differential equations, which are solved numerically. The friction coefficient of the flow and the Nusselt number are calculated for a wide range of parameters, and the results are presented in graphical form. In addition, dual solutions of the problem were noticed to occur for a certain range of the unsteadiness parameter. A stability analysis has been performed and presented to elucidate the behavior of these dual solutions. Findings For the solution of the upper branch, the velocity and temperature profiles of the nanofluid are enhanced by increasing the magnetic field parameter M, but the same variables decrease in the solution of the lower branch. The same trend is detected for the velocity of the fluid with the suction parameter. The temperature of the nanofluid decreases in both branches of the solution by increasing the Prandtl number. Similarly, they decrease with the suction parameter. The temperature of the nanofluid slightly increases in both branches of the solution by increasing the Eckert number. With the stability analysis the authors performed, it was determined that the solution is stable in the upper branch, but unstable in the lower branch. Originality/value The kerosene nanofluid with hybrid Zinc/Aluminum-oxide is presented for the first time in the literature.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge.
Abstract: Purpose The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims to analyse the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge. Design/methodology/approach The multivariable differential equations with partial derivatives are converted into a specific type of ordinary differential equations by using valid similarity transformations. The reduced mathematical model is elucidated in the MATLAB system by using the bvp4c procedure. This solution method is competent in delivering multiple solutions once appropriate assumptions are supplied. Findings The results of multiple control parameters have been studied, and the findings are verified to provide more than one solution. The coefficient of skin friction was discovered to be increased by adding nanoparticles volume fraction from 0% to 0.5% and 1%, by almost 1.6% and 3.2%. Besides, increasing the nanoparticles volume fraction improves heat transfer efficiency gradually. The inclusion of the activation energy factor displays a downward trend in the mass transfer rates, consequently reducing the concentration profile. In contrast, the increment of the binary reaction rate greatly facilitates the augmentation of mass transfer rates. There is a significant enhancement in the heat transfer rate, approximately 13.2%, when the suction effect dominates about 10% in the boundary layer flow. Additionally, the results revealed that as the activation energy rises, the temperature and concentration profiles rise as well. It is proved that the activation energy parameter boosts the concentration of chemical species in the boundary layer. A similar pattern emerges as the wedge angle parameter increases. The current effort aims to improve the thermal analysis process, particularly in real-world applications such as geothermal reservoirs, chemical engineering and food processing, which often encountered mass transfer phenomenon followed by chemical reactions with activation energy. Originality/value The present results are original and new for the study of flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction.