scispace - formally typeset
Search or ask a question
JournalISSN: 2226-4108

Journal of Advanced Ceramics 

Springer Science+Business Media
About: Journal of Advanced Ceramics is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Ceramic & Chemistry. It has an ISSN identifier of 2226-4108. It is also open access. Over the lifetime, 763 publications have been published receiving 16878 citations. The journal is also known as: Xianjin taoci.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: High-entropy ceramics (HECs) as mentioned in this paper are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.
Abstract: High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements. Although in the infant stage, the emerging of this new family of materials has brought new opportunities for material design and property tailoring. Distinct from metals, the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering. Aside from strengthening, hardening, and low thermal conductivity that have already been found in high-entropy alloys, new properties like colossal dielectric constant, super ionic conductivity, severe anisotropic thermal expansion coefficient, strong electromagnetic wave absorption, etc., have been discovered in HECs. As a response to the rapid development in this nascent field, this article gives a comprehensive review on the structure features, theoretical methods for stability and property prediction, processing routes, novel properties, and prospective applications of HECs. The challenges on processing, characterization, and property predictions are also emphasized. Finally, future directions for new material exploration, novel processing, fundamental understanding, in-depth characterization, and database assessments are given.

346 citations

Journal ArticleDOI
TL;DR: A brief review of current research activities that focus on the synthesis and controlled assembly of inorganic nanofibers by electrospinning, their electrical, optical and magnetic properties, as well as their applications in various areas including sensors, catalysts, batteries, filters and separators is provided in this article.
Abstract: This paper provides a brief review of current research activities that focus on the synthesis and controlled assembly of inorganic nanofibers by electrospinning, their electrical, optical and magnetic properties, as well as their applications in various areas including sensors, catalysts, batteries, filters and separators. We begin with a brief introduction to electrospinning technology and a brief method to produce ceramic nanofibers from electrospinning. We then discuss approaches to the controlled assembly and patterning of electrospun ceramic nanofibers. We continue with a highlight of some recent applications enabled by electrospun ceramic nanofibers, with a focus on the physical properties of functional ceramic nanofibers as well as their applications in energy and environmental technologies. In the end, we conclude this review with some perspectives on the future directions and implications for this new class of functional nanomaterials. It is expected that this review paper can help the readers quickly become acquainted with the basic principles and particularly the experimental procedure for preparing and assembly of 1D ceramic nanofiber and its arrays.

231 citations

Journal ArticleDOI
Fei Li1, Lin Zhou1, Ji-Xuan Liu1, Yongcheng Liang1, Guo-Jun Zhang1 
TL;DR: In this article, high-entropy pyrochlore type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method by using six rare earth oxides and ZrO2 as the raw powders and the results demonstrate that the (5RE1/5)2Zr2O7 have been formed after heated at 1000°C.
Abstract: High-entropy pyrochlore-type structures based on rare-earth zirconates are successfully produced by conventional solid-state reaction method. Six rare-earth oxides (La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, and Y2O3) and ZrO2 are used as the raw powders. Five out of the six rare-earth oxides with equimolar ratio and ZrO2 are mixed and sintered at different temperatures for investigating the reaction process. The results demonstrate that the high-entropy pyrochlores (5RE1/5)2Zr2O7 have been formed after heated at 1000°C. The (5RE1/5)2Zr2O7 are highly sintering resistant and possess excellent thermal stability. The thermal conductivities of the (5RE1/5)2Zr2O7 high-entropy ceramics are below 1 W·m–1·K–1 in the temperature range of 300–1200°C. The (5RE1/5)2Zr2O7 can be potential thermal barrier coating materials.

212 citations

Journal ArticleDOI
TL;DR: In this paper, a high-entropy silicide (HES) with close-packed hexagonal structure is successfully manufactured through reactive spark plasma sintering at 1300 °C for 15 min.
Abstract: A high-entropy silicide (HES), (Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2 with close-packed hexagonal structure is successfully manufactured through reactive spark plasma sintering at 1300 °C for 15 min. The elements in this HES are uniformly distributed in the specimen based on the energy dispersive spectrometer analysis except a small amount of zirconium that is combined with oxygen as impurity particles. The Young’s modulus, Poisson’s ratio, and Vickers hardness of the obtained (Ti0.2Zr0.2Nb0.2Mo0.2W0.2)Si2 are also measured.

182 citations

Journal ArticleDOI
TL;DR: In this article, a simple and cheap method to prepare porous ZnO by using zinc nitrate, ethanol and triethanolamine (TEA) is reported, where the sample was calcined at 300 °C, 400 °C and 500 °C with different heating rates.
Abstract: In this paper, a simple and cheap method to prepare porous ZnO by using zinc nitrate, ethanol and triethanolamine (TEA) is reported. The as-prepared sample consisted of nano and micro pores. The sample was calcined at 300 °C, 400 °C and 500 °C with different heating rates. At 500 °C, the nano pores disappeared but the sample maintained its micro porosity. Field emission scanning electron microscopy (FE-SEM) pictures confirmed that the size and growth of ZnO nanoparticles depended on the heating conditions. The infrared (IR) absorption peak of Zn-O stretching vibration positioned at 457 cm−1 was split into two peaks centered at 518 cm−1 and 682 cm−1 with the change of morphology. These results confirmed that Fourier transform infrared (FT-IR) spectrum was sensitive to variations in particle size, shape and morphology. The photoluminescence (PL) spectrum of porous ZnO contained five emission peaks at 397 nm, 437 nm, 466 nm, 492 nm and 527 nm. Emission intensity enhanced monotonously with increase of temperature and the change was rapid between temperatures of 300 °C and 500 °C. This was due to the elimination of organic species and improvement in the crystallanity of the sample at 500 °C.

177 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023114
2022147
2021109
202073
201951
201841