scispace - formally typeset
Search or ask a question
JournalISSN: 1524-0215

Journal of biomolecular techniques 

Association of Biomolecular Resource Facilities
About: Journal of biomolecular techniques is an academic journal published by Association of Biomolecular Resource Facilities. The journal publishes majorly in the area(s): Mass spectrometry & DNA sequencing. It has an ISSN identifier of 1524-0215. It is also open access. Over the lifetime, 747 publications have been published receiving 13363 citations. The journal is also known as: JBT & J. biomol. tech..


Papers
More filters
Journal Article
TL;DR: Real-time RT-PCR remains a research tool, and it is important to recognize the considerable pitfalls associated with transcriptome analysis, with the successful application of RTPCR depending on careful experimental design, application, and validation.
Abstract: Polymerase chain reaction (PCR)-based assays can target either DNA (the genome) or RNA (the transcriptome). Targeting the genome generates robust data that are informative and, most importantly, generally applicable. This is because the information contained within the genome is context-independent; i.e., generally, every normal cell contains the same DNA sequence--the same mutations and polymorphisms. The transcriptome, on the other hand, is context-dependent; i.e., the mRNA complement and level varies with physiology, pathology, or development. This makes the information contained within the transcriptome intrinsically flexible and variable. If this variability is combined with the technical limitations inherent in any reverse-transcription (RT)-PCR assay, it can be difficult to achieve not just a technically accurate but a biologically relevant result. Template quality, operator variability, the RT step itself, and subjectivity in data analysis and reporting are just a few technical aspects that make real-time RT-PCR appear to be a fragile assay that makes accurate data interpretation difficult. There can be little doubt that in the future, transcriptome-based analysis will become a routine technique. However, for the time being it remains a research tool, and it is important to recognize the considerable pitfalls associated with transcriptome analysis, with the successful application of RTPCR depending on careful experimental design, application, and validation.

1,073 citations

Journal ArticleDOI
TL;DR: The Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences.
Abstract: The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences.

376 citations

Journal Article
TL;DR: The development of real-time RT-PCR has resulted in an exponential increase in its use over the last couple of years, and the method has undoubtedly become the standard for quantifying cytokine patterns, clarifying many functional properties of immune cells and their associated diseases.
Abstract: Real-time reverse transcriptase polymerase chain reaction (RT-PCR) is becoming a widely used method to quantify cytokines from cells, tissues, or tissue biopsies. The method allows for the direct detection of PCR product during the exponential phase of the reaction, combining amplification and detection in a single step. Using TaqMan chemistry (Applied Biosystems, Foster City, CA) and the ABI Prism 7700 Sequence Detection System (Applied Biosystems), we validated a large panel of murine and human cytokines, as well as other factors playing a role in the immune system, such as chemokines and apoptotic markers. Although the method allows fast, sensitive, and accurate quantification, different control assays are necessary for the method to be reliable. By construction of complementary DNA (cDNA) plasmid clones, standard curves are generated that allow direct quantification of every unknown sample. Furthermore, the choice of a reliable housekeeping gene is very important. Finally, co-amplification of contaminating genomic DNA is avoided by designing sets of primers located in different exons or on intron–exon junctions. In conclusion, the real-time RT-PCR technique is very accurate and sensitive, allows high throughput, and can be performed on very small samples. The development of real-time RT-PCR has resulted in an exponential increase in its use over the last couple of years, and the method has undoubtedly become the standard for quantifying cytokine patterns, clarifying many functional properties of immune cells and their associated diseases.

371 citations

Journal Article
TL;DR: This paper reviews the best-known differential scanning calorimetries (DSCs), and describes here the most extensive applications of DSC in biology and nanoscience.
Abstract: This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.

360 citations

Journal Article
TL;DR: The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Deltaf), a simultaneous parameter related to the energy loss or dissipation (DeltaD) of the system is also measured.
Abstract: In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Δf), a simultaneous parameter related to the energy loss or dissipation (ΔD) of the system is also measured. Δf essentially measures changes in the mass attached to the sensor surface, while ΔD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007.

327 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20238
202220
20217
202020
201925
20189