scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Biology in 1972"


Journal ArticleDOI
TL;DR: The ways in which HCLs can be employed as both two- and three-dimensional substrata in cell behavioral studies are illustrated with some preliminary observations on the form, motility, adhesion, and growth of human diploid cells and two lines of malignant cells.
Abstract: A simple technique is described for the preparation of collagen substrata containing 0 1% of collagen by weight, in the form of native bundles with a 640 A period, the substrata are similar in these respects to soft-tissue matrices These substrate are hydrated collagen lattices (HCLs) in which the watery milieu is held within a fibrous collagen net mainly by capillary forces. HCLs have been characterized in terms of the course of collagen precipitation and aggregation, ultrastructure, and their stability under various conditions. The ways in which HCLs can be employed as both two- and three-dimensional substrata in cell behavioral studies are illustrated with some preliminary observations on the form, motility, adhesion, and growth of human diploid cells and two lines of malignant cells.

1,548 citations


Journal ArticleDOI
TL;DR: An enzymatic iodination procedure utilizing lactoperoxidase, radioactive iodide, and hydrogen peroxide generated by a glucose oxidase-glucose system has been described and utilized for a study of the red cell membrane.
Abstract: An enzymatic iodination procedure utilizing lactoperoxidase (LPO), radioactive iodide, and hydrogen peroxide generated by a glucose oxidase-glucose system has been described and utilized for a study of the red cell membrane. 97% of the incorporated isotope is in the erythrocyte ghost and 3% is associated with hemoglobin. No significant labeling of the red cell membrane occurs in the absence of LPO or by the deletion of any of the other reagents. A 6 million-fold excess of chloride ions inhibits iodination by no more than 50%. Incorporation of up to 1 x 106 iodide atoms into a single erythrocyte membrane results in no significant cell lysis. The incorporated label is exclusively in tyrosine residues as monoiodotyrosine. 10–15% of the trichloroacetic acid-precipitable radioactivity can be extracted with lipid solvents but is present as either labeled protein or 125I. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins reveals only two labeled protein bands out of the 15 present, and the presence of 50-1 x 106 iodide atoms per ghost does not alter this pattern. Component a has a molecular weight of 110,000, is carbohydrate poor, and represents 40% of the total label. Component b has an apparent molecular weight of 74,000, contains all of the demonstrable sialic acid, and accounts for 60% of the total label. Trypsinization of iodinated, intact red cells results in the disappearance of only component b, the appearance of labeled glycopeptides in the medium, and the absence of smaller, labeled peptides remaining in the membrane. Pronase treatment hydrolyzes component b in a similar fashion, but also cleaves component a to a 72,000 mol wt peptide which is retained in the membrane. A combination of protease treatment and double labeling with 125I and 131I does not reveal the appearance of previously unexposed proteins.

660 citations


Journal ArticleDOI
TL;DR: The fine structure and distribution of tight and gap junctions in epithelia of the rat pancreas, liver, adrenal cortex, epididymis, and duodenum, and in smooth muscle were examined in paraformaldehyde-glutaraldehyde-fixed, tracer-permeated, and freeze-fractured tissue preparations.
Abstract: The fine structure and distribution of tight (zonula occludens) and gap junctions in epithelia of the rat pancreas, liver, adrenal cortex, epididymis, and duodenum, and in smooth muscle were examined in paraformaldehyde-glutaraldehyde-fixed, tracer-permeated (K-pyroantimonate and lanthanum), and freeze-fractured tissue preparations. While many pentalaminar and septilaminar foci seen in thin-section and tracer preparations can be recognized as corresponding to well-characterized freeze-fracture images of tight and gap junction membrane modifications, many others cannot be unequivocally categorized—nor can all freeze-etched aggregates of membrane particles. Generally, epithelia of exocrine glands (pancreas and liver) have moderate-sized tight junctions and large gap junctions, with many of their gap junctions basal to the junctional complex. In contrast, the adrenal cortex, a ductless gland, may not have a tight junction but does possess large gap junctions. Mucosal epithelia (epididymis and intestine) have extensive tight junctions, but their gap junctions are not as well developed as those of glandular tissue. Smooth muscle contains numerous small gap junctions The incidence, size, and configuration of the junctions we observed correlate well with the known functions of the junctions and of the tissues where they are found.

640 citations


Journal ArticleDOI
TL;DR: The motility of reactivated sperm was wholly dependent on the presence of ATP; the requirement for a divalent cation was best satisfied with Mg++, although some motility was also obtained with Mn++ and Ca++.
Abstract: Extraction with 0 04% (w/v) Triton X-100 removes the flagellar membrane from sea urchin sperm while leaving the motile apparatus apparently intact When reactivated in a suitable medium containing exogenous adenosine triphosphate (ATP), nearly 100% of the sperm are motile and they swim in a manner resembling that of live sperm. Under standard conditions, with 1 mM ATP at 25 degrees C, the reactivated sperm had an average frequency of 32 beats/sec and progressed forward a distance of 2.4 microm/beat; comparable figures for live sperm in seawater were 46 beats/sec and 3 9 microm/beat. The adenosine triphosphatase (ATPase) activity of the reactivated sperm was measured with a pH-stat in the presence of oligomycin to inhibit residual mitochondrial ATPase. The motile sperm had an ATPase activity of 0.16 micromole P(i)/(min x mg protein), while sperm that had been rendered non-motile by homogenizing had an activity of 0 045 micromole P(i)/(min x mg protein). The difference between the ATPase activities of the motile and nonmotile sperm was tentatively interpreted as the amount of activity coupled to movement, and under optimal conditions it amounted to about 72% of the total ATPase activity Under some conditions the movement-coupled ATPase activity was proportional to the beat frequency, but it was possibly also affected by other wave parameters. The coupled ATPase activity decreased to almost zero when movement was prevented by raising the viscosity, or by changing the pH or salt concentration. The motility of reactivated sperm was wholly dependent on the presence of ATP; other nucleotides gave very low phosphatase activity and no movement. The requirement for a divalent cation was best satisfied with Mg(++), although some motility was also obtained with Mn(++) and Ca(++). The coupled ATPase activity had a Michaelis constant (K(m)) of 0.15 mM. The beat frequency of the reactivated sperm varied with the ATP concentration, with an effective "K(m)" of 0.2 mM.

522 citations


Journal ArticleDOI
TL;DR: The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.
Abstract: The sarcoplasmic reticulum (SR) was studied in the smooth muscles of rabbit main pulmonary artery, mesenteric vein, aorta, mesenteric artery, taenia coli, guinea pig mesenteric artery, and human uterus, and correlated with contractions of the smooth muscles in Ca-free media. SR volumes were determined in main pulmonary artery (5.1%), aorta (5%), portal-anterior mesenteric vein (2.2%), taenia coli (2%), and mesenteric artery (1.8%): because of tangentially sectioned membranes these estimates are subject to a correction factor of up to +50% of the values measured. Smooth muscles that contained a relatively large volume of SR maintained significant contractile responses to drugs in the virtual absence of extracellular calcium at room temperatures, while smooth muscles that had less SR did not. The unequal maximal contractions of main pulmonary artery elicited by different drugs were also observed in Ca-free, high potassium-depolarizing solution, indicating that they were secondary to some mechanism independent of changes in membrane potential or calcium influx. Longitudinal tubules of SR run between and are fenestrated about groups of surface vesicles separated from each other by intervening dense bodies. Extracellular markers (ferritin and lanthanum) entered the surface vesicles, but not the SR. The peripheral SR formed couplings with the surface membrane: the two membranes were separated by gaps of approximately 10 nm traversed by electron-opaque connections suggestive of a periodicity of approximately 20–25 nm. These couplings are considered to be the probable sites of electromechanical coupling in twitch smooth muscles. Close contacts between the SR and the surface vesicles may have a similar function, or represent sites of calcium extrusion. The presence of both thick and thin myofilaments and of rough SR in smooth muscles supports the dual, contractile and morphogenetic, function of smooth muscle.

508 citations


Journal ArticleDOI
TL;DR: Comparative studies show that features of the ciliary necklace and "membrane-microtubule" complex are present in all somatic cilia examined including those of the ameboflagellate Tetramitus, sea urchin embryos, rat trachea, and nonmotile cilia of cultured chick embryo fibroblasts.
Abstract: Cilia, primarily of the lamellibranch gill (Elliptio and Mytilus), have been examined in freeze-etch replicas. Without etching, cross fractures rarely reveal the 9 + 2 pattern, although suggestions of ninefold symmetry are present. In etched preparations, longitudinal fractures through the matrix show a triplet spoke alignment corresponding to the spoke periodicity seen in thin sections. Dynein rows can be visualized along the peripheral microtubules in some preparations. Fracture faces of the ciliary membrane are smooth with few membrane particles, except in the regions adjacent to the basal plate. In the transition region below the plate, a unique particle arrangement, the ciliary necklace, is found. In the Elliptio gill, on fracture face A the necklace is comprised of three well-defined rows or strands of membrane particles that encircle the ciliary shaft. The rows are scalloped and each scallop corresponds to a peripheral doublet microtubule. In thin sections at the level of these particles, a series of champagne-glass structures link the microtubular doublets to the ciliary membrane. The ciliary necklace and this "membrane-microtubule" complex may be involved in energy transduction or the timing of ciliary beat. Comparative studies show that these features are present in all somatic cilia examined including those of the ameboflagellate Tetramitus, sea urchin embryos, rat trachea, and nonmotile cilia of cultured chick embryo fibroblasts. The number of necklace strands differs with each species. The necklace has not been found in rat or sea urchin sperm.

462 citations


Journal ArticleDOI
TL;DR: Methods were developed for the isolation of Chlamydomonas flagella and for their fractionation into membrane, mastigoneme, "matrix," and axoneme components.
Abstract: Methods were developed for the isolation of Chlamydomonas flagella and for their fractionation into membrane, mastigoneme, "matrix," and axoneme components. Each component was studied by electron microscopy and acrylamide gel electrophoresis. Purified membranes retained their tripartite ultrastructure and were shown to contain one high molecular weight protein band on electrophoresis in sodium dodecyl sulfate (SDS)-urea gels. Isolated mastigonemes (hairlike structures which extend laterally from the flagellar membrane in situ) were of uniform size and were constructed of ellipsoidal subunits joined end to end. Electrophoretic analysis of mastigonemes indicated that they contained a single glycoprotein of ∼ 170,000 daltons The matrix fraction contained a number of proteins (particularly those of the amorphous material surrounding the microtubules), which became solubilized during membrane removal. Isolated axonemes retained the intact "9 + 2" microtubular structure and could be subfractionated by treatment with heat or detergent. Increasing concentrations of detergent solubilized axonemal microtubules in the following order: one of the two central tubules; the remaining central tubule and the outer wall of the B tubule; the remaining portions of the B tubule; the outer wall of the A tubule; the remainder of the A tubule with the exception of a ribbon of three protofilaments. These three protofilaments appeared to be the "partition" between the lumen of the A and B tubule. Electrophoretic analysis of isolated outer doublets of 9 + 2 flagella of wild-type cells and of "9 + 0" flagella of paralyzed mutants indicated that the outer doublets and central tubules were composed of two microtubule proteins (tubulins 1 and 2) Tubulins 1 and 2 were shown to have apparent molecular weights of 56,000 and 53,000 respectively

457 citations


Journal ArticleDOI
TL;DR: Simultaneous disruption of furrowing activity and of the contractile ring largely confirms the vital role of thecontractile ring as the organelle of cell cleavage.
Abstract: The first cleavage furrow in eggs of Arbacia (sea urchin) is accompanied by a uniform ring of aligned microfilaments, called the contractile ring. Individual contractile ring filaments measure 35–60 A and occasionally appear "hollow." The contractile ring exists from about 20 sec after anaphase to the end of furrowing activity, i.e., 6–7 min at 20°C. It is closely associated with the plasma membrane at all times, and is probably assembled there. It is about 8 µ wide and 0.2 µ thick throughout cleavage. Its volume decreases, however, suggesting a contraction-related disassembly of contractile ring filaments, rather than a sliding-filament mechanism in the strict sense. Cytochalasin B (>10-6 M) arrests cleavage within 60 sec, by which time contractile ring filaments are no longer visible ultrastructurally. The furrow may be seen to recede within this time. Karyokinesis is unaffected. Simultaneous disruption of furrowing activity and of the contractile ring largely confirms the vital role of the contractile ring as the organelle of cell cleavage.

421 citations


Journal ArticleDOI
TL;DR: Evidence is obtained that significant amounts of HRP (>2%) can be exocytosed after uptake, can exist intact on the cell surface, or can be digested extracellularly, which is difficult to reconcile with several of the postulated mechanisms whereby macrophages are thought to play a prominent role in the induction of an immune response.
Abstract: The in vitro interaction of soluble horseradish peroxidase (HRP) with homogeneous mono layers of mouse macrophages has been studied using sensitive biochemical and cytochemical techniques. The compartmentalization of HRP in extracellular and intracellular sites has been quantitatively evaluated. A significant fraction is bound to a serum-derived layer, which coats the surface of culture vessels and may be removed by appropriate washes. Macrophages interiorize HRP as a solute in pinocytic vesicles without appreciable binding of the glycoprotein to the plasma membrane. Uptake is directly proportional to the concentration of HRP in the culture medium. 1 x 106 cells ingest 0.0025% of the administered load per hr over a wide range of concentrations. Cytochemically, all demonstrable HRP is sequestered within the endocytic vesicles and secondary lysosomes of the vacuolar apparatus. After uptake, the enzymatic activity of HRP is inactivated exponentially with a half-life of 7–9 hr, until enzyme is no longer detectable. When macrophages have pinocytosed trace-labeled HRP-125I, cell-associated isotope disappears with a t ½ of 20–30 hr and they release monoiodotyrosine-125I into the culture medium. We were unable to obtain evidence that significant amounts of HRP (>2%) can be exocytosed after uptake, can exist intact on the cell surface, or can be digested extracellularly. It is difficult to reconcile these observations with several of the postulated mechanisms whereby macrophages are thought to play a prominent role in the induction of an immune response.

412 citations


Journal ArticleDOI
TL;DR: This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril, and the very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, thisprotein fraction may be localized in lysosomes.
Abstract: Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.

344 citations


Journal ArticleDOI
TL;DR: This work has studied the reconstruction of skeletal muscle fibers and their associated capillaries in portions of rat and rabbit skeletal muscles after injury with either freezing, ischemia, or in situ autografting to explore the relationships between basal lamina and regenerating cells.
Abstract: To explore in detail the relationships between basal lamina (BL) and regenerating cells, we have studied the reconstruction of skeletal muscle fibers and their associated capillaries in portions of rat and rabbit skeletal muscles after injury with either freezing, ischemia, or in situ autografting. Each type of injury produces complete necrosis of cells. The BL, however, remains intact in the area of injury and maintains a "map" of the outline of the spatial relationships between muscle fibers and capillaries. Repopulation of the defect with new cells occurs primarily along the old BL. The spatial relationship between cells, as it existed before injury, is thus reestablished. This process appears to be aided by the ability of each category of regenerating cells to grow along the cell-supporting surface of its own BL. The regenerating cells of muscle fibers and capillaries frequently form a new layer of BL. It is of the usual thickness and is deposited primarily along the outer surfaces of plasma membranes in locations in which the new cells are separated from the old BL. Where an old layer of BL is present overlying a newly formed layer, the old layer may be retained or it may be removed. Removal of redundant BL is probably mediated by interstitial cells which embrace the outside surfaces of BL of regenerated skeletal muscle fibers and capillaries.

Journal ArticleDOI
TL;DR: It is concluded that normal salivary epithelial morphology and branching morphegenesis require the presence of acid mucopolysaccharide-protein within the epithelial basal lamina.
Abstract: The morphogenetic role of the acid mucopolysaccharide (glycosaminoglycan) at the epithelial surface of mouse embryo submandibular glands has been studied by comparing the in vitro morphogenesis of epithelia from which the mucopolysaccharide was removed with that of those that retained the mucopolysaccharide. Epithelia isolated free of mesenchyme by procedures which retain the bulk of surface mucopolysaccharide maintain their lobular shape and undergo uninterrupted branching morphogenesis in culture in direct combination with fresh mesenchyme. Under identical culture conditions, epithelia from which surface mucopolysaccharide was removed lose their lobules and become spherical masses of tissue. During continued culture, the spherical epithelia produce outgrowths from which branching morphogenesis resumes. The morphogenetically active mucopolysaccharide is localized within the basal lamina of the epithelial basement membrane and appears to be bound to protein. During culture in combination with mesenchyme, epithelia undergoing uninterrupted morphogenesis show maximal accumulation of newly synthesized surface mucopolysaccharide at the distal ends of the lobules, the sites of incipient branching. In contrast, the material accumulates nearly equivalently over the surface of the spherical epithelia, with the exception that there is greater accumulation of the material at the surfaces of the budding outgrowths, the sites where morphogenesis will resume. Rapidly proliferating cells are localized within the lobules of epithelia undergoing uninterrupted morphogenesis, but are distributed uniformly in the cortex of the spherical epithelia, except for the outgrowths which show a greater localization of proliferating cells. It is concluded that normal salivary epithelial morphology and branching morphegenesis require the presence of acid mucopolysaccharide-protein within the epithelial basal lamina.

Journal ArticleDOI
TL;DR: In late fetal liver, only rises in enzyme concentration less than twofold may be attributed to the enrichment of parenchymal tissue at the expense of hematopoietic elements, and these are the main ones for interpreting the biochemical differentiation of liver.
Abstract: Quantitative stereological methods have been adapted for the measurement of the volume of liver attributable to parenchymal, hematopoietic, and Kupffer cells and for the measurement of the relative and absolute number (per unit volume) of these cell types and the mean volume of the parenchymal cell. These morphological parameters are the main ones for interpreting the biochemical differentiation of liver. Quantitative changes in these parameters, in rat liver between the 15th day of gestation and adult life, are presented. Despite the large number of hematopoietic cells, the parenchymal cells fill more than half of the liver volume between the 15th and 18th days of gestation and 0.85 of the liver volume at term. The fraction of liver volume occupied by Kupffer cells is never more than 0.02; the number of Kupffer cells per cubic centimeter increases less than twofold between fetal and adult life. The mean volume of individual parenchymal cells undergoes a threefold rise during late fetal life, declines in the neonatal period, and doubles between the 12th and 28th postnatal days. With the morphometric data obtained, it is impossible to convert enzyme concentrations (units per gram, determined in homogenates of whole liver) to enzyme amounts per unit volume of parenchymal or hematopoietic tissue or per individual cell of either type. In late fetal liver, only rises in enzyme concentration less than twofold may be attributed to the enrichment of parenchymal tissue at the expense of hematopoietic elements. The sudden upsurge, by more than twofold, of hepatic enzymes of the late fetal cluster (and also of the neonatal and late suckling cluster) reflects rises per parenchymal mass and per parenchymal cell. Thyroxine and glucagon, the administration of which to fetal rats promotes enzyme differentiation in liver, are without appreciable effect on the cytological parameters studied. Hydrocortisone accelerates the involution of hematopoietic tissue in fetal liver. Enzymes that are diminished by prenatal injection of hydrocortisone may be concentrated in hematopoietic cells.

Journal ArticleDOI
TL;DR: The results are consistent with the concept that the erythrocyte ghost membrane is a planar fluid domain formed by a bilayer membrane continuum which is interrupted by localized, yet mobile, proteic intercalations.
Abstract: This paper demonstrates the translational movement along the plane of the human erythrocyte ghost of the membrane particles exposed by freeze-fracture. The membrane particles can be aggregated by incubation of the ghosts in media with a pH in the vicinity of 5 5 or 3 5. The particles are disaggregated in neutral and alkaline media (pH 9 5) and also at pH 4.5 Aggregation of the particles at pH 5.5 is reversible, prevented by prefixation in glutaraldehyde and by media of high ionic strength. Particle aggregation occurs within 2–4 min. These results are consistent with the concept that the erythrocyte ghost membrane is a planar fluid domain formed by a bilayer membrane continuum which is interrupted by localized, yet mobile, proteic intercalations.

Journal ArticleDOI
TL;DR: Curarized cutaneous pectoris nerve muscle preparations from frogs were subjected to prolonged indirect stimulation at 2/sec while recording from end plate regions to determine the degree to which their stores of transmitter had been depleted.
Abstract: Curarized cutaneous pectoris nerve muscle preparations from frogs were subjected to prolonged indirect stimulation at 2/sec while recording from end plate regions. At the ends of the periods of stimulation, the curare was removed and the preparations were fixed for electron microscopy or treated with black widow spider venom to determine the degree to which their stores of transmitter had been depleted. After 6–8 hr of stimulation the nerve terminals were almost completely depleted of their stores of transmitter and of their population of vesicles. Most of the transmitter release occurred during the first 4 hr of stimulation, and after this time most (about 80%) of the fibers were depleted of about 80% of their transmitter. The organization of the nerve terminals in 4-hr preparations appeared normal and the terminals still contained many vesicles. When peroxidase was present in the bathing medium, terminals from stimulated preparations showed many vesicles that contained peroxidase, whereas the rested control preparations showed few such vesicles The fact that after 4 hr the total number of vesicles is not markedly changed while a large fraction (up to 45%) contained peroxidase suggests that in our experiments vesicles were continuously fusing with and reforming from the axolemma.

Journal ArticleDOI
TL;DR: It is concluded that polypeptides are probably one of the major components of thePSD and that the structural integrity of the PSD depends on polypePTides because disruption of the covalent or hydrophobic bonding of these polyPEptides leads to a progressive loss of PSD structure.
Abstract: A fraction enriched in synaptic complexes has been isolated from rat brain. The major structural elements of synaptic complexes after isolation are a sector of pre- and postsynaptic plasma membranes joined together by a synaptic cleft and a postsynaptic density (PSD) located on the inner surface of the postsynaptic membrane. On its outer surface, the postsynaptic membrane has a series of projections which extend about halfway into the cleft and which occur along the entire length of the PSD. Proteolytic enzymes at high concentrations remove the PSD and open the synaptic cleft; at low concentrations the PSD is selectively destroyed. By contrast, the structural integrity of the PSD is resistant to treatment with NaCl, EGTA, and low concentrations of urea. Pre- and postsynaptic membranes also remain joined by the synaptic cleft after NaCl, EGTA, or mild urea treatment. High concentrations of urea cause the partial dissociation of the PSD. We conclude that polypeptides are probably one of the major components of the PSD and that the structural integrity of the PSD depends on polypeptides because disruption of the covalent or hydrophobic bonding of these polypeptides leads to a progressive loss of PSD structure.

Journal ArticleDOI
TL;DR: The term "microperoxisomes" is proposed to distinguish these peroxisomal proteins of rat hepatocytes from the better-known larger peroxISomes of liver and kidney, which resemble the small perox isomes described in many other cell types.
Abstract: Huge numbers of peroxisomes are present in guinea pig duodenum, jejunum, and ileum, and in rat duodenum. The peroxisomes have been studied by light and electron microscopy, including visualization by incubation in a newly-developed alkaline 3,3' diaminobenzidine (DAB) medium. Electron micrographs of more than 3700 guinea pig peroxisomes have been studied. The diameter of most peroxisomes ranges from 0.15 µ. to 0.25 µ. They often appear in clusters, surrounded by and continuous, in numerous places, with smooth endoplasmic reticulum (ER). The ER is extremely tortuous in these regions. Serial sectioning is valuable for studying the ER-peroxisome relationships but viewing sections at different angles, tilted with a goniometer stage, is more informative. The intimate relations of the two organelles appear the same in tissue fixed in four different fixatives. The peroxisomes may be interpreted as localized dilatations of smooth ER retaining multiple membranous continuities. This interpretation is discussed in light of the turnover data on peroxisomal proteins of rat hepatocytes reported by Poole and colleagues. The very large numbers of peroxisomes in intestinal epithelium lead to speculations concerning their functional significance. They resemble the small peroxisomes described in many other cell types. Although the distinctive relationship of these peroxisomes to the ER is probably more significant than their small size, for practical purposes we propose the term "microperoxisomes" to distinguish these peroxisomes from the better-known larger peroxisomes of liver and kidney.

Journal ArticleDOI
TL;DR: It is concluded that, in visceral capillaries, the fenestrae, channels, and plasmalemmal vesicles, viewed as related parts in a system of dynamic structures, are the structural equivalent of the large pore system.
Abstract: The pathway followed by macromolecules across the wall of visceral capillaries has been studied by using a set of tracers of graded sizes, ranging in diameter from 100 A (ferritin) to 300 A (glycogen). Polysaccharide particles, i.e. dextran 75 (mol wt ∼75,000; diam ∼125 A), dextran 250 (mol wt 250,000; diam ∼225 A), shellfish glycogen (diam ∼200 A) and rabbit liver glycogen (diam ∼300 A), are well tolerated by Wistar-Furth rats and give no vascular reactions ascribable to histamine release. Good definition and high contrast of the tracer particles were obtained in a one-step fixation—in block staining of the tissues by a mixture containing aldehydes, OsO4 and lead citrate in phosphate or arsenate buffer, pH 7.4, followed by lead staining of sections. The glycogens and dextrans used move out of the plasma through the fenestrae and channels of the endothelium relatively fast (3–7 min) and create in the pericapillary spaces transient (2–5 min) concentration gradients centered on the fenestrated sectors of the capillary walls. The tracers also gained access to the plasmalemmal vesicles, first on the blood front and subsequently on the tissue front of the endothelium. The particles are temporarily retained by the basement membrane. No probe moved through the intercellular junctions. It is concluded that, in visceral capillaries, the fenestrae, channels, and plasmalemmal vesicles, viewed as related parts in a system of dynamic structures, are the structural equivalent of the large pore system.

Journal ArticleDOI
TL;DR: It is suggested that at least one function of particles is to serve as anchoring sites for cytoplasmic filaments, which limit the expansion of the lumenal membrane during distention of the bladder, thereby preventing it from rupturing.
Abstract: To determine the three-dimensional structure of the lumenal membrane of transitional epithelium, a study was made of sectioned, negatively stained, and freeze-etched specimens from intact epithelium and membrane fractions from rabbit urinary bladder. Particulate membrane components are confined to plaque regions within which the unit membrane is asymmetric, having a thicker outer leaflet. Transversely fractured freeze-etched plaques display a thick (∼80 A), particulate lumenal leaflet and a thin (∼40 A) cytoplasmic one. Four different faces of the two leaflets can be distinguished: two complementary, split, inner membrane faces exposed by freeze-cleaving the bilayer and two external (lumenal and cytoplasmic) membrane surfaces revealed by deep-etching. On the split, inner face of the lumenal leaflet appear polygonal plaques of hexagonally arranged particles. These fit into holes observed on the complementary, split, innerface of the cytoplasmic leaflet. The particles, which have a center-to-center spacing of ∼160 A, also seem to protrude from the external surface of the lumenal leaflet, where their subunits (∼50 A in diameter) are revealed by freeze-etching and negative staining. The plaques are separated from each other by smooth-surfaced regions, which cleave like simple lipid bilayers. Since the array of plaque particles covers only ∼73% of the membrane surface area, whereas 27% is taken up by particle-free interplaque regions, the presence of particles cannot in itself entirely account for the permeability barrier of the lumenal membrane. Although no particles are observed protruding from the cytoplasmic surface of the membrane, cytoplasmic filaments are attached to it by short, cross-bridge-like filaments that seem to contact the particles within the membrane. These long cytoplasmic filaments cross-link adjacent plaques. Therefore, we suggest that at least one function of the particles is to serve as anchoring sites for cytoplasmic filaments, which limit the expansion of the lumenal membrane during distention of the bladder, thereby preventing it from rupturing. The particle-free interplaque regions probably function as hinge areas between the stiff plaques, allowing the membrane to fold up when the bladder is contracted.

Journal ArticleDOI
TL;DR: The study indicates that negatively charged sites in the basement membrane play a crucial role in the E-C coupling process in heart muscle.
Abstract: Correlation of the localization of La+++ with its effects on Ca++ exchange in cultured rat heart cells is examined with the use of a recently developed technique. 75% of cellular Ca++ is exchangeable and is completely accounted for by two kinetically defined phases. The rapidly exchangeable phase has a t ½ = 1.15 min and accounts for 1 1 mmoles Ca++/kg wet cells or 43% of the exchangeable Ca++ (cells perfused with [Ca++]o = 1 mM) Phase 2 has a t ½ = 19.2 min and accounts for 1.5 mmoles Ca++/kg wet cells or 57% of the exchangeable Ca++. 0.5 mM [La+++]o displaces 0 52 mmoles Ca++/kg wet cells—all from phase 1—and almost completely abolishes subsequent Ca++ influx and efflux The presence of La+++ in the washout converts the washout pattern to a single phase system with a t ½ = 124 min. The effects upon Ca++ exchange are coincident with abolition of contractile tension but regenerative depolarization of the tissue is maintained Electron microscope localization of the La+++ places it exclusively in the external lamina or basement membrane of the cells. The study indicates that negatively charged sites in the basement membrane play a crucial role in the E-C coupling process in heart muscle

Journal ArticleDOI
TL;DR: The structure of the oviduct basal body has been reconstructed from serial, oblique, and tangential sections This composite information has been used to construct a three-dimensional scale model of the organelle.
Abstract: The structure of the oviduct basal body has been reconstructed from serial, oblique, and tangential sections This composite information has been used to construct a three-dimensional scale model of the organelle The walls are composed of nine equally spaced sets of three tubules, which run from base to apex pitched to the left at a 10°–15° angle to the longitudinal axis. The transverse axis of each triplet set at its basal end intersects a tangent to the lumenal circumference of the basal body at a 40° angle (triplet angle). As the triplet set transverses from base to apex, it twists toward the lumen on the longitudinal axis of the inner A tubule; therefore, the triplet angle is 10° at the basal body-cilium junction. Strands of fibrous material extend from the basal end of each triplet to form a striated rootlet. A pyramidal basal foot projects at right angles from the midregion of the basal body. In the apex, a 175 mµ long trapezoidal sheet is attached to each triplet set. The smaller of the two parallel sides is attached to all three tubules while the longitudinal edge (one of the equidistant anti-parallel sides) is attached to the C tubule. The sheet faces counterclockwise (apex to base view) and gradually unfolds from base to apex; the outside corner merges with the cell membrane.

Journal ArticleDOI
TL;DR: Conditions which yielded reproducible growth kinetics with extensive, relatively synchronous differentiation are described for chick muscle cultures, suggesting that cells can fuse as early as the beginning of the G1 period, and suggesting that there is not an obligatory exit from the cell cycle or a prolonged G1period before cell fusion and differentiation during myogenesis.
Abstract: Conditions which yielded reproducible growth kinetics with extensive, relatively synchronous differentiation are described for chick muscle cultures. The effects of cell density and medium changes on the timing of cell fusion were examined. Low-density cultures which received a change of medium at 24 hr after plating show the highest rate of cell fusion, increasing from 15 to 80% fused cells in a 10 hr period. These optimal culture conditions were employed to reexamine two questions from the earlier literature on muscle culture: ( a ) can cells which normally would fuse at the end of one cell cycle be forced to go through another cell cycle before fusion; and ( b ) how soon after its final S period can a cell complete fusion? In answer to the first question, it was found that if the medium is changed, many cells which would otherwise fuse can be made to undergo another cell cycle before fusion. In the second case, radioautographs were made from cultures incubated with tritiated thymidine for various times at the beginning of the fusion period. These show labeled nuclei in myotubes as early as 3 hr after the beginning of the incubation period. This indicates that cells can fuse as early as the beginning of the G1 period, and suggests that there is not an obligatory exit from the cell cycle or a prolonged G1 period before cell fusion and differentiation during myogenesis.

Journal ArticleDOI
TL;DR: The results suggest that, in contrast to histones whose synthesis appears to be highly regulated, the acidic residual proteins may have a regulatory function in the control of cell proliferation in continuously dividing mammalian cells.
Abstract: The synthesis and accumulation of acidic proteins in the tightly bound residual nuclear fraction goes on throughout the cell cycle of continuously dividing populations of HeLa S-3 cells; however, during late G1 there is an increased rate of synthesis and accumulation of these proteins which precedes the onset of DNA synthesis. Unlike that of the histones, whose synthesis is tightly coupled to DNA replication, the synthesis of acidic residual nuclear proteins is insensitive to inhibitors of DNA synthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of acidic residual nuclear proteins shows different profiles during the G1, S, and G2 phases of the cell cycle. These results suggest that, in contrast to histones whose synthesis appears to be highly regulated, the acidic residual proteins may have a regulatory function in the control of cell proliferation in continuously dividing mammalian cells.

Journal ArticleDOI
TL;DR: The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle, leading to the rather speculative possibility that thenuclear pore might be the site of initiation and/or replication of DNA as well as the siteof nucleocytoplasmic exchange.
Abstract: The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle. The number of nuclear pores/nucleus was calculated from the experimentally determined values of nuclear pores/µ2 and the nuclear surface. In the lymphocyte system the number of pores/nucleus approximately doubles during the 48 hr after PHA stimulation. The increase in pore frequency is biphasic and the first increase seems to be related to an increase in the rate of protein synthesis. The second increase in pores/nucleus appears to be correlated with the onset of DNA synthesis. In the HeLa cell system, we could also observe a biphasic change in pore formation. Nuclear pores are formed at the highest rate during the first hour after mitosis. A second increase in the rate of pore formation corresponds in time with an increase in the rate of nuclear acidic protein synthesis shortly before S phase. The total number of nuclear pores in HeLa cells doubles from ∼2000 in G1 to ∼4000 at the end of the cell cycle. The doubling of the nuclear volume and the number of nuclear pores might be correlated to the doubling of DNA content. Another correspondence with the nuclear pore number in S phase is found in the number of simultaneously replicating replication sites. This number may be fortuitous but leads to the rather speculative possibility that the nuclear pore might be the site of initiation and/or replication of DNA as well as the site of nucleocytoplasmic exchange. That is, the nuclear pore complex may have multiple functions.

Journal ArticleDOI
TL;DR: Evidence is presented that surviving cells retain liver-specific urea cycle functions measured by their capacity to transform ornithine into arginine, synthesize DNA in glucose-deficient medium, and synthesize and secrete albumin.
Abstract: A method for culturing non- or slowly growing, differentiated fetal rat liver cells is described. It involves the use of collagenase as a digesting agent and of a selective medium deficient in arginine which suppresses the growth of nonparenchymal liver cells. Evidence is presented that surviving cells (a) retain liver-specific urea cycle functions measured by their capacity to transform ornithine into arginine, (b) synthesize DNA in glucose-deficient medium, and (c) synthesize and secrete albumin. This primary cell culture responds to partially hepatectomized rat serum and may be an appropriate assay system for the study of mechanisms which regulate liver regeneration.

Journal ArticleDOI
TL;DR: The peroxidase reaction distinguishes the typical mononuclear phagocytes or Kupffer cells of rat liver from the endothelial-lining cells, and the so-called fat-storing cells are per oxidase negative and totally nonphagocytic.
Abstract: The fine structural characteristics and phagocytic properties of peroxidase-positive and peroxidase-negative cells in rat hepatic sinusoids were investigated. Cells with a positive peroxidase reaction in the endoplasmic reticulum and the nuclear envelope make up approximately 40% of cells in rat hepatic sinusoids and have abundant cytoplasm containing numerous granules and vacuoles, and occasional tubular, vermiform invaginations. After intravenous injection of colloidal carbon, the luminal plasma membrane of these cells shows continuous sticking of carbon, and there is evidence of avid phagocytosis of colloidal carbon particles. Peroxidase-positive cells are the only cells in hepatic sinusoids which phagocytize large (0.8 µ in diameter) latex particles. In contrast, the peroxidase-negative endothelial cells, which make up 48% of cells, have scanty perinuclear cytoplasm and organelles, and their long cytoplasmic extensions that form the lining of the hepatic sinusoids have fenestrations; these cells ingest small amounts of colloidal carbon, principally by micropinocytosis, exhibit no sticking of carbon particles to their plasma membranes, and do not ingest the larger (latex) particles. The so-called fat-storing cells are peroxidase negative and totally nonphagocytic. The peroxidase reaction thus distinguishes the typical mononuclear phagocytes or Kupffer cells of rat liver from the endothelial-lining cells.

Journal ArticleDOI
TL;DR: In the mammalian cerebellum, a new type of junction which resembles the septate junctions (SJs) of invertebrate epithelia is observed between axonal branches forming the tip of the brush of basket fibers around the initial segment of the Purkinje cell axon.
Abstract: "Gap" junctions, the morphological correlate for low-resistance junctions, are demonstrated between some mossy fiber terminals and granule cell dendrites in some lower vertebrate cerebella (gymnotid and frog). Most of the gap junctions (GJs) seen in the gymnotid-fish cerebellum exhibit an asymmetrical configuration, the electron-opaque cytoplasmic material underlying the junction being more extensive in the dendritic than in the axonal side. In the frog cerebellum, the GJs have a symmetrical distribution of such electron-opaque material. In both species the GJs are encountered at the same synaptic interface as the conventional synaptic zone (CSZ), constituting "mixed synapses" in a morphological sense. The axonal surface covered by CSZs is larger than that covered by GJs. In mammalian cerebellum, GJs are observed only in the molecular layer, between perikarya, dendrites, or perikarya and dendrites of the inhibitory interneurons. These GJs are intermixed with attachment plates and intermediary junctions interpreted as simply adhesive. In the mammalian cerebellum, a new type of junction which resembles the septate junctions (SJs) of invertebrate epithelia is observed between axonal branches forming the tip of the brush of basket fibers around the initial segment of the Purkinje cell axon. It is suggested that such junctions may be modified forms of septate junctions. The physiological implications of the possible existence of high-resistance cross-bridges between basket cell terminals, which may compartmentalize the extracellular space and thus regulate extracellular current flow, must be considered.

Journal ArticleDOI
TL;DR: Inhibition of nerve fiber (neurite) formation by colchicine and Colcemid was studied in monolayer cultures of dissociated spinal ganglia of the chick to suggest that inhibition of neurite growth involves a specific effect of col chicine, presumably the disruption of microtubules.
Abstract: Inhibition of nerve fiber (neurite) formation by colchicine and Colcemid was studied in monolayer cultures of dissociated spinal ganglia of the chick. Replica cultures were fixed after appropriate incubation and alkaloid treatment. Quantitative estimates of the mean total neurite length per neuron (MNL) were made by use of camera lucida tracing. MNL values plotted against time of incubation gave control curves with an initial lag period, a phase of rapid increase, and a final phase in which MNL increase was retarded. Colchicine at 0.01–0.05 µg/ml (2.4 x 10-8-1.2 x 10-7 M) caused reversible, concentration dependent, inhibition of the increase in MNL when applied during the lag period or phase of rapid increase. At the highest concentration there was a net decrease in MNL. The effect of Colcemid at 0.05 µg/ml was similar to that of colchicine, but more rapidly reversible. In most experiments there was no loss of neurons during the period of inhibition of MNL increase by colchicine or Colcemid. Therefore selective destruction of neurons was not involved in the inhibition of neurite growth. Prolonged incubation after treatment with the highest concentration used resulted in a 50% loss of neurons, in part through detachment of viable cells. Quantitative radioautography of the alkaloid-treated neurons with leucine-14C indicated little or no inhibition of incorporation into protein during inhibition of MNL increase. The results strongly suggest that inhibition of neurite growth involves a specific effect of colchicine, presumably the disruption of microtubules. They are thus consistent with the hypothesis that the polymerization of microtubules is essential to the formation of nerve fibers.

Journal ArticleDOI
TL;DR: Dr. Peracchia's present address is the Department of Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642.
Abstract: CAMILLO PERACCHIA and BRANT S. MITTLER . From the Department of Anatomy, Duke University Medical Center, Durham, North Carolina 27706, and the Department of Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642 . Dr. Peracchia's present address is the Department of Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642 .

Journal ArticleDOI
TL;DR: Two different membrane fractions were obtained from a brush-border fraction of rat kidney cortex by using their different electrical surface charges in preparative free-flow electrophoresis to demonstrate the polarity of this cell.
Abstract: Two different membrane fractions were obtained from a brush-border fraction of rat kidney cortex by using their different electrical surface charges in preparative free-flow electrophoresis. One membrane fraction contained only morphologically intact microvilli and was characterized by a high specific activity of alkaline phosphatase. The other fraction morphologically resembled classical plasma membranes by possessing junctional complexes and a high Na-K-ATPase activity The contamination of the isolated membrane fractions by other cell organelles was extremely low These two fractions represent the apical (luminal) and the basal (interstitial) area of the renal proximal tubule cell membrane and clearly demonstrate the polarity of this cell.