scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cellular and Molecular Medicine in 2005"


Journal ArticleDOI
TL;DR: Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival.
Abstract: Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.

1,811 citations


Journal ArticleDOI
TL;DR: Because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenic.
Abstract: Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM-bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell-cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand-binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer-associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.

858 citations


Journal ArticleDOI
TL;DR: VEGF plays a multifunctional role where it can also have autocrine pro‐survival effects and contribute to tumour cell chemoresistance and the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.
Abstract: Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.

669 citations


Journal ArticleDOI
TL;DR: Age, geographic location, reproductive events, exogenous hormones, lifestyle risk factors, familial history of breast cancer, mammographic density, history of benign breast disease, ionizing radiation, bone density, height, IGF‐1 and prolactin levels, chemopreventive agents and genetic factors are summarized.
Abstract: Breast cancer is the most frequent cancer in women and represents the second leading cause of cancer death among women (after lung cancer). The etiology of breast cancer is still poorly understood with known breast cancer risk factors explaining only a small proportion of cases. Risk factors that modulate the development of breast cancer discussed in this review include: age, geographic location (country of origin) and socioeconomic status, reproductive events, exogenous hormones, lifestyle risk factors (alcohol, diet, obesity and physical activity), familial history of breast cancer, mammographic density, history of benign breast disease, ionizing radiation, bone density, height, IGF- 1 and prolactin levels, chemopreventive agents. Additionally, we summarized breast cancer risk associated with the following genetic factors: breast cancer susceptibility high-penetrance genes (BRCA1, BRCA2, p53, PTEN, ATM, NBS1 or LKB1) and low-penetrance genes such as cytochrome P450 genes (CYP1A1, CYP2D6, CYP19), glutathione S-transferase family (GSTM1, GSTP1), alcohol and one-carbon metabolism genes (ADH1C and MTHFR), DNA repair genes (XRCC1, XRCC3, ERCC4/XPF) and genes encoding cell signaling molecules (PR, ER, TNFalpha or HSP70). All these factors contribute to a better understanding of breast cancer risk. Nonetheless, in order to evaluate more accurately the overall risk of breast tumorigenesis, novel genetic and phenotypic traits need to be identified.

491 citations


Journal ArticleDOI
TL;DR: The progress that has been made to date and the challenges remaining in successfully translating this promising (but not yet definitively established) approach from bench to the bedsite are delineated.
Abstract: Repair of large bone defects is still a challenge for the orthopaedic, reconstructive and maxillo-facial surgeon. Availability of pluripotent stem cells from either autologous or allogenic sources and the potential of inducing the osteogenic phenotype is motivating exploration and development of custom-tailored materials known as "bioengineered bone constructs". In such cases, the clinical scenario involves either expansion of stem cells in monolayer and loading them into a porous scaffold prior to surgery or direct cell expansion within the scaffold, and implanting this novel construct back into the donor patient. In this review, we delineate, from an engineering perspective, the progress that has been made to date and the challenges remaining in successfully translating this promising (but not yet definitively established) approach from bench to the bed site.

357 citations


Journal ArticleDOI
TL;DR: A considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro‐ and anti‐apoptotic factors.
Abstract: The natural polyamines putrescine, spermidine and spermine are in multiple ways involved in cell growth and the maintenance of cell viability. In the course of the last 15 years more and more evidence hinted also at roles in gene regulation. It is therefore not surprising that the polyamines are involved in events inherent to genetically programmed cell death. Following inhibition of ornithine decarboxylase, a key step in polyamine biosynthesis, numerous links have been identified between the polyamines and apoptotic pathways. Examples of activation and prevention of apoptosis due to polyamine depletion are known for several cell lines. Elevation of polyamine concentrations may lead to apoptosis or to malignant transformation. These observations are discussed in the present review, together with possible mechanisms of action of the polyamines. Contradictory results and incomplete information blur the picture and complicate interpretation. Since, however, much interest is focussed at present on all aspects of programmed cell death, a considerable progress in the elucidation of polyamine functions in apoptotic signalling pathways is expected, even though enormous difficulties oppose pinpointing specific interactions of the polyamines with pro- and anti-apoptotic factors. Such situation is quite common in polyamine research.

309 citations


Journal ArticleDOI
TL;DR: Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split‐thickness skin grafts.
Abstract: Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.

303 citations


Journal ArticleDOI
TL;DR: Preclinical studies have demonstrated that down‐regulation of survivin expression/function increased the apoptotic rate, reduced tumor‐growth potential and sensitized tumor cells to chemotherapeutic drugs with different action mechanisms and γ‐irradiation in in vitro and in vivo models of different human tumor types.
Abstract: Survivin is a member of the inhibitor of apoptosis protein (IAP) family, that has been implicated in both control of cell division and inhibition of apoptosis. Specifically, its anti-apoptosis function seems to be related to the ability to directly or indirectly inhibit caspases. Survivin is selectively expressed in the most common human neoplasms and appears to be involved in tumour cell resistance to some anticancer agents and ionizing radiation. On the basis of these findings survivin has been proposed and and attractive target for new anticancer interventions. Several preclinical studies have demonstrated that down-regulation of survivin expression/function, accomplished through the use of antisense oligonucleotides, dominant negative mutants, ribozymes, small interfering RNAs and cyclin-dependent kinase inhibitors, increased the apoptotic rate, reduced tumor-growth potential and sensitized tumor cells to chemotherapeutic drugs with different action mechanisms and γ-irradiation in in vitro and in vivo models of different human tumor types.

260 citations


Journal ArticleDOI
TL;DR: The mechanism(s) of L‐selectin ectodomain shedding is examined, the physiological implications are discussed, and gene transcription, post‐translational modifications, association with the actin cytoskeleton, and topographic distribution are discussed.
Abstract: L-selectin is a cell adhesion molecule consisting of a large, highly glycosylated, extracellular domain, a single spanning transmembrane domain and a small cytoplasmic tail. It is expressed on most leukocytes and is involved in their rolling on inflamed vascular endothelium prior to firm adhesion and transmigration. It is also required for the constitutive trafficking of lymphocytes through secondary lymphoid organs. Like most adhesion molecules, L-selectin function is regulated by a variety of mechanisms including gene transcription, post-translational modifications, association with the actin cytoskeleton, and topographic distribution. In addition, it is rapidly downregulated by proteolytic cleavage near the cell surface by ADAM-17 (TACE) and at least one other "sheddase". This process of "ectodomain shedding" results in the release of most of the extracellular portion of L-selectin from the cell surface while retaining the cytoplasmic, transmembrane, and eleven amino acids of the extracellular domain on the cell. This review will examine the mechanism(s) of L-selectin ectodomain shedding and discuss the physiological implications.

233 citations


Journal ArticleDOI
TL;DR: Stem cells remain hard to identify, however it is thought that they reside in a ‘niche’ towards the base of the crypt and their activity is regulated by the paracrine secretion of growth factors and cytokines from surrounding mesenchymal cells.
Abstract: The intestinal tract has a rapid epithelial cell turnover, which continues throughout life. The process is regulated and maintained by a population of stem cells, which give rise to all the intestinal epithelial cell lineages. Studies in both the mouse and the human show that these cells are capable of forming clonal crypt populations. Stem cells remain hard to identify, however it is thought that they reside in a 'niche' towards the base of the crypt and their activity is regulated by the paracrine secretion of growth factors and cytokines from surrounding mesenchymal cells. Stem cell division is usually asymmetric with the formation of an identical daughter stem cell and committed progenitor cells. Progenitor cells retain the ability to divide until they terminally differentiate. Occasional symmetric division produces either 2 daughter cells with stem cell loss, or 2 stem cells and eventual clone dominance. This stochastic extinction of stem cell lines with eventual dominance of one cell line is called 'niche succession'. The discovery of plasticity, the ability of stem cells to engraft into, and in some cases replace the function of damaged host tissues has generated a large amount of scientific and clinical interest: however the concept remains controversial and is still a subject of hot debate. Studies are beginning to identify the complex molecular, genetic and cellular pathways underlying stem cell function such as Wnt signalling, bone morphogenetic protein (BMP) and Notch/Delta pathways. The derangement of these pathways within stem cells plays an integral part in the development of malignancy within the intestinal tract.

178 citations


Journal ArticleDOI
TL;DR: HSP60 binding to Bax under normal conditions suggests a key regulatory role in apoptosis, and changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion.
Abstract: HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria. It is now clear that a significant amount of HSP60 is also present in the extra-mitochondrial cytosol of many cells. In the heart, this cytosolic HSP60 complexes with Bax, Bak and Bcl-XL, but not with Bcl-2. Reduction in HSP60 expression precipitates apoptosis, but does not alter mitochondrial function. During hypoxia, HSP60 cellular distribution changes, with HSP60 leaving the cytosol, and translocating to the plasma membrane. Total cellular HSP60 does not change until 10 h of reoxygenation; however, release of cytochrome c from the mitochondria occurs prior to reoxygenation, coinciding with the redistribution of HSP60. The changes in HSP60, Bax and cytochrome c during hypoxia can be replicated by ATP depletion. HSP60 has also been shown to accelerate the cleavage of pro-caspase3. Thus, HSP60 has a complex role in apoptosis in the cell. Its binding to Bax under normal conditions suggests a key regulatory role in apoptosis.

Journal ArticleDOI
TL;DR: A special type of cell in the human and rat exocrine pancreas that has phenotypic characteristics of the enteric interstitial cells of Cajal (pICC) is shown, and two‐dimensional reconstructions from serial photos suggest a network‐like spatial distribution of pICC.
Abstract: We show here (presumably for the first time) a special type of cell in the human and rat exocrine pancreas. These cells have phenotypic characteristics of the enteric interstitial cells of Cajal (ICC). To identify pancreatic interstitial cells of Cajal (pICC) we used routine light microscopy, non-conventional light microscopy (less than 1 mum semi-thin sections of Epon-embedded specimens cut by ultramicrotomy and stained with Toluidine blue), transmission electron microscopy (TEM), and immunocytochemistry. The results showed that pICC can be recognized easily by light microscopy, particularly on semi-thin sections, as well as by TEM. Two-dimensional reconstructions from serial photos suggest a network-like spatial distribution of pICC. pICC represent 3.3+/-0.5% of all pancreatic cells, and seem to establish close spatial relationships with: capillaries (43%), acini (40%), stellate cells (14%), nerve fibres (3%). Most of pICC (88%) have 2 or 3 long processes (tens of mum) emerging from the cell body. TEM data show that pICC meet the criteria for positive diagnosis as ICC (e.g. numerous mitochondria, 8.7+/-0.8% of cytoplasm). Immunocytochemistry revealed that pICC are CD117/c-kit and CD34 positive. We found pICC positive (40-50%) for smooth muscle alpha-actin or S-100, and, occasionally, for CD68, NK1 neurokinin receptor and vimentin. The reactions for desmin and chromogranin A were negative in pICC. At present, only hypotheses and speculations can be formulated on the possible role of the pICC (e.g., juxtacrine and/or paracrine roles). In conclusion, the quite-established dogma: "ICC only in cavitary organs" is overpassed.

Journal ArticleDOI
TL;DR: A Cajal‐like type of tubal interstitial cells (t‐ICC), resembling the archetypal enteric ICC, is described here ‐ presumably for the first time’.
Abstract: We describe here--presumably for the first time--a Cajal-like type of tubal interstitial cells (t-ICC), resembling the archetypal enteric ICC. t-ICC were demonstrated in situ and in vitro on fresh preparations (tissue cryosections and primary cell cultures) using methylene-blue, crystal-violet, Janus-Green B or MitoTracker-Green FM Probe vital stainings. Also, t-ICC were identified in fixed specimens by light microscopy (methylene-blue, Giemsa, trichrome stainings, Gomori silver-impregnation) or transmission electron microscopy (TEM). The positive diagnosis of t-ICC was strengthened by immunohistochemistry (IHC; CD117/c-kit+ and other 14 antigens) and immunofluorescence (IF; CD117/c-kit+ and other 7 antigens). The spatial density of t-ICC (ampullar-segment cryosections) was 100-150 cells/mm2. Non-conventional light microscopy (NCLM) of Epon semithin-sections revealed a network-like distribution of t-ICC in lamina propria and smooth muscle meshwork. t-ICC appeared located beneath of epithelium, in a 10-15 microm thick 'belt', where 18+/-2% of cells were t-ICC. In the whole lamina propria, t-ICC were about 9%, and in muscularis approximately 7%. In toto, t-ICC represent ~8% of subepithelial cells, as counted by NCLM. In vitro, t-ICC were 9.9+/-0.9% of total cell population. TEM showed that the diagnostic 'gold standard' (Huizinga et al., 1997) is fulfilled by 'our' t-ICC. However, we suggest a 'platinum standard', adding a new defining criterion- characteristic cytoplasmic processes (number: 1-5; length: tens of microm; thickness: < or =0.5 microm; aspect: moniliform; branching: dichotomous; organization: network, labyrinthic-system). Quantitatively, the ultrastructural architecture of t-ICC is: nucleus, 23.6+/-3.2% of cell volume, with heterochromatin 49.1+/-3.8%; mitochondria, 4.8+/-1.7%; rough and smooth endoplasmic-reticulum (1.1+/-0.6%, 1.0+/-0.2%, respectively); caveolae, 3.4+/-0.5%. We found more caveolae on the surface of cell processes versus cell body, as confirmed by IF for caveolins. Occasionally, the so-called 'Ca2+-release units' (subplasmalemmal close associations of caveolae+endoplasmic reticulum+mitochondria) were detected in the dilations of cell processes. Electrophysiological single unit recordings of t-ICC in primary cultures indicated sustained spontaneous electrical activity (amplitude of membrane potentials: 57.26+/-6.56 mV). Besides the CD117/c-kit marker, t-ICC expressed variously CD34, caveolins 1&2, alpha-SMA, S-100, vimentin, nestin, desmin, NK-1. t-ICC were negative for: CD68, CD1a, CD62P, NSE, GFAP, chromogranin-A, PGP9.5, but IHC showed the possible existence of (neuro)endocrine cells in tubal interstitium. We call them 'JF cells'. In conclusion, the identification of t-ICC might open the door for understanding some tubal functions, e.g. pace-making/peristaltism, secretion (auto-, juxta- and/or paracrine), regulation of neurotransmission (nitrergic/purinergic) and intercellular signaling, via the very long processes. Furthermore, t-ICC might even be uncommitted bipotential progenitor cells.

Journal ArticleDOI
TL;DR: The hypothesis that gastric Helicobacter pylori infection can trigger autoimmune pancreatitis in genetically predisposed subjects is strengthened as a significant homology between human carbonic anhydrase II and α‐carbonic anHydrase of Helicobacteria pylory is found.
Abstract: Autoimmune pancreatitis is a recently defined nosological entity, which accounts for 46-6% of all forms of chronic pancreatitis and is often associated with other autoimmune diseases, particularly Sjogren's syndrome Possession of the HLA DRB1*0405-DQB1*0401 genotype confers a risk for the development of autoimmune pancreatitis Autoantibodies against carbonic anhydrase II and lactoferrin are frequently present in affected subjects and are suspected to have a pathogenic role A link between gastric infection by Helicobacter pylori and autoimmune pancreatitis has been hypothesized We used in silico protein analysis and search for HLA binding motifs to verify this hypothesis We found a significant homology between human carbonic anhydrase II and alpha-carbonic anhydrase of Helicobacter pylori, an enzyme which is fundamental for the survival and proliferation of the bacterium in the gastric environment Moreover, the homologous segments contain the binding motif of the HLA molecule DRB1*0405 Our data strengthen the hypothesis that gastric Helicobacter pylori infection can trigger autoimmune pancreatitis in genetically predisposed subjects

Journal ArticleDOI
TL;DR: IF showed that m‐CLIC express CD117/c‐kit, sometimes associated with CD34 and with vimentin along their processes, and the usual TEM criteria, the so‐called ‘gold’ or ‘platinum’ standards.
Abstract: Previous reports describing Cajal-like interstitial cells in human uterus are contradictory in terms of c-kit immunoreactivity: either negative (but vimentin-positive) in pregnant myometrium, or positive, presumably in the endometrium. The aim of this study was to verify the existence of human myometrial Cajal-like interstitial cells (m-CLIC). Six different, complementary approaches were used: 1) methylene-blue supravital staining of tissue samples (cryosections), 2) methylene blue and Janus green B vital staining (m-CLIC and mitochondrial markers, respectively), and 3) extracellular single-unit electrophysiological recordings in cell cultures, 4) non-conventional light microscopy on glutaraldehyde/osmium fixed, Epon-embedded semi-thin sections (less than 1 microm) stained with toluidine blue (TSM), 5) transmission electron microscopy (TEM), and 6) immunofluorescence (IF). We found m-CLIC in myometrial cryosections and in cell cultures. In vitro, m-CLIC represented approximately 7% of the total cell number. m-CLIC had 2-3 characteristic processes which were very long (approximately 60 microm), very thin (< or =0.5 microm) and moniliform. The dilated portions of processes usually accommodated mitochondria. In vitro, m-CLIC exhibited spontaneous electrical activity (62.4+/-7.22 mV membrane potentials, short duration: 1.197+/-0.04 ms). Moreover, m-CLIC fulfilled the usual TEM criteria, the so-called 'gold' or 'platinum' standards (e.g. the presence of discontinuous basal lamina, caveolae, endoplasmic reticulum, and close contacts between each other, with myocytes, nerve fibers and/or capillaries etc.). IF showed that m-CLIC express CD117/c-kit, sometimes associated with CD34, with vimentin along their processes. In conclusion, we describe myometrial Cajal-like interstitial cells that have affinity for methylene blue and Janus green B vital dyes, fulfill (all) TEM criteria, express CD117/c-kit and have spontaneous electric activity.

Journal ArticleDOI
TL;DR: Evidence is presented that ICC and ICC‐like cells frequently establish close contacts (synapses) with several types of immunoreactive cells (IRC): lymphocytes, plasma cells, eosinophil, basophils, macrophages and mast cells, as well as rat stomach, gut, bladder and uterus.
Abstract: We present transmission electron microscope (TEM) evidence that ICC and ICC-like cells frequently establish close contacts (synapses) with several types of immunoreactive cells (IRC): lymphocytes, plasma cells, eosinophils, basophils, macrophages and mast cells. Such synapses were found in various organs: human mammary gland and myometrium, as well as rat stomach, gut, bladder and uterus. Specimens were observed by conventional TEM on ultrathin sections. Based on morphometric analyses and computer-aided 3-D reconstructions from serial sections, we propose an operational definition of ICC-IRC synapses: cell-to-cell close contacts where the two cells are separated by only approximately 15 nm, equivalent to twice the plasmalemmal thickness. Two types of such synapses were found: (i) uniform ('plain') synapses (PS). close contact extending for >200 nm, and (ii) multi-contact ('kiss and run') synapses (MS)--with multiple, focal, close-contact points alternating with regions of wider intermembrane distance. For instance, a typical PS between a rat bladder ICC-like cell and an eosinophil was 2.48 microm long and 11+/-4 nm wide. By contrast, a MS synapse in rat myometrium (between an ICC-like cell and an eosinophil) was 8.64 microm long and had 13 contact points. The synaptic cleft measured 15+/-8 nm at contact points and approximately 100 nm or more in wider areas. These synapses are different from gap junctions usually seen between ICC and between ICC and smooth muscle cells. We previously proposed that ICC-like cells might represent stromal progenitor cells, participate in juxtacrine/paracrine signaling and play a role in immune surveillance. The nanoscopic distances between the two contiguous membranes suggest a juxtacrine cell-to-cell signaling (chemical synapse), via juxtacrinins, a specific case of phenomenins. However, the (micro)vesicles found in the synaptic cleft may correspond to an exosome-based mechanism.

Journal ArticleDOI
TL;DR: It is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.
Abstract: Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo. When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo, the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo. These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo, however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.

Journal ArticleDOI
TL;DR: This work used TEM to provide unequivocal evidence for the presence of ICLC in the intralobular stroma of human resting mammary gland and reported the phenotype characteristics of these ICLCs in vitro.
Abstract: We have previously shown the existence of ICLC in human resting mammary gland stroma by means of methylene blue (vital) staining and c-kit immunopositivity (immunofluorescence and immunohistochemistry). In addition, we reported the phenotype characteristics of these ICLC in vitro (primary cell cultures). Since the identification of ICLC outside the gut requires, at this moment, the obligatory use of TEM, we used this technique and provide unequivocal evidence for the presence of ICLC in the intralobular stroma of human resting mammary gland. According to the 'platinum standard' (10 TEM criteria for the certitude diagnosis of ICLC), we found interstitial cells with the following characteristics: 1. location: among the tubulo-alveolar structures, in the non-epithelial space; 2. caveolae: approximately 2.5% of cell volume; 3. mitochondria: approximately 10% of cell volume; 4. endoplasmic reticulum: either smooth or rough, approximately 2-3% of cell volume; 5. cytoskeleton: intermediate and thin filaments, as well as microtubules are present; 6. myosin thick filaments: undetectable; 7. basal lamina: occasionally found; 8. gap junctions: occasionally found; 9. close contacts with targets: nerve fibers, capillaries, immunoreactive cells by 'stromal synapses'; 10. characteristic cytoplasmic processes: i) number: frequently 2-3; ii) length: several tens of mum; iii) thickness: uneven caliber, 0.1-0.5 microm, with dilations, but very thin from the emerging point; iv) aspect: moniliform, usually with mitochondria located in dilations; v) branching: dichotomous pattern; vi) Ca(2+) release units: are present; vii) network labyrinthic system: overlapping cytoplasmic processes. It remains to be established which of the possible roles that we previously suggested for ICLC (e.g. juxta- and/or paracrine secretion, uncommited progenitor cells, immunological surveillance, intercellular signaling, etc.) are essential for the epithelium/stroma equilibrium in the mammary gland under normal or pathological conditions.

Journal ArticleDOI
TL;DR: A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration and is discussed in detail.
Abstract: After myocardial infarction, injured cardiomyocytes are replaced by fibrotic tissue promoting the development of heart failure. Cell transplantation has emerged as a potential therapy and stem cells may be an important and powerful cellular source. Embryonic stem cells can differentiate into true cardiomyocytes, making them in principle an unlimited source of transplantable cells for cardiac repair, although immunological and ethical constraints exist. Somatic stem cells are an attractive option to explore for transplantation as they are autologous, but their differentiation potential is more restricted than embryonic stem cells. Currently, the major sources of somatic cells used for basic research and in clinical trials originate from the bone marrow. The differentiation capacity of different populations of bone marrow-derived stem cells into cardiomyocytes has been studied intensively. The results are rather confusing and difficult to compare, since different isolation and identification methods have been used to determine the cell population studied. To date, only mesenchymal stem cells seem to form cardiomyocytes, and only a small percentage of this population will do so in vitro or in vivo. A newly identified cell population isolated from cardiac tissue, called cardiac progenitor cells, holds great potential for cardiac regeneration. Here we discuss the potential of the different cell populations and their usefulness in stem cell based therapy to repair the damaged heart.

Journal ArticleDOI
TL;DR: These studies have identified cell autonomous and non‐autonomous mechanisms that regulate of cell death and reveal that developmental cell death can either be a pre‐determined cell fate or the consequence of insufficient cell interactions that normally promote cell survival.
Abstract: The elimination of cells by programmed cell death is a fundamental event in development where multicellular organisms regulate cell numbers or eliminate cells that are functionally redundant or potentially detrimental to the organism. The evolutionary conservation of the biochemical and genetic regulation of programmed cell death across species has allowed the genetic pathways of programmed cell death determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster to act as models to delineate the genetics and regulation of cell death in mammalian cells. These studies have identified cell autonomous and non-autonomous mechanisms that regulate of cell death and reveal that developmental cell death can either be a pre-determined cell fate or the consequence of insufficient cell interactions that normally promote cell survival.

Journal ArticleDOI
TL;DR: The mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways are summarized and the potential therapeutic value of these molecules could be harnessed.
Abstract: Cardiovascular disease is a leading cause of death worldwide. Loss of function or death of cardiomyocytes is a major contributing factor to these diseases. Cell death in conditions such as heart failure and myocardial infarction is associated with apoptosis. Apoptotic pathways have been well studied in non-myocytes and it is thought that similar pathways exist in cardiomyocytes. These pathways include death initiated by ligation of membrane-bound death receptors, release of pro-apoptotic factors from mitochondria or stress at the endoplasmic reticulum. The key regulators of apoptosis include inhibitors of caspases (IAPs), the Bcl-2 family of proteins, growth factors, stress proteins, calcium and oxidants. The highly organized and predictive nature of apoptotic signaling means it is amenable to manipulation. A thorough understanding of the apoptotic process would facilitate intervention at the most suitable points, alleviating myocardium decline and dysfunction. This review summarizes the mechanisms underlying apoptosis and the mediators/regulators involved in these signaling pathways. We also discuss how the potential therapeutic value of these molecules could be harnessed.

Journal ArticleDOI
TL;DR: In this paper, the authors present visual evidence for the existence of interstitial cells in human atrial myocardium: interstitial Cajal-like cells (ICLC).
Abstract: We present here visual evidence for the existence of a new type of interstitial cells in human atrial myocardium: interstitial Cajal-like cells (ICLC). These cells fulfil the so-called 'platinum standard' (a set of 10 ultrastructural criteria for the positive diagnosis of ICLC). Conventional transmission electron microscopy (TEM), followed by reconstructions from serial photomicrographs, revealed typical ICLC with 2 or 3 long, moniliform processes (several tens of micrometers long and 0.1-0.5 microm thick), emerging from the (small) cell body. Cell processes dichotomously branch and have mitochondria (at the level of dilations), caveolae and Ca(2+) release units. Cell prolongations establish close spatial relationships between each other, as well as with capillaries, myocardial cells, and other connective tissue cells. Our preliminary data suggest that ICLC exist in rat ventricular myocardium, too.

Journal ArticleDOI
TL;DR: Since peripheral blood contains more T‐lymphocytes than bone marow, the use of HSC from the peripheral blood increases the risk of graft‐versus‐host disease after allogeneic SCT, but for patients with high‐risk disease, peripheral blood SCT has become the therapy of choice.
Abstract: Hematopoietic stem cells can be collected from the peripheral blood. These hematopoietic stem cells (HSC), or better progenitor cells, are mostly expressed as the percentage of cells than react with CD34 antibodies or that form colonies in semi-solid medium (CFU-GM). Under steady-state conditions the number of HSC is much lower in peripheral blood than in bone marrow. Mobilization with chemotherapy and/or growth factors may lead to a concentration of HSC in the peripheral blood that equals or exceeds the concentration in bone marrow. Transplantation of HSC from the peripheral blood results in faster hematologic recovery than HSC from bone marrow. This decreases the risk of infection and the need for blood-product support. For autologous stem-cell transplantation (SCT), the use of peripheral blood cells has completely replaced the use of bone marrow. For allogeneic SCT, on the other hand, the situation is more complex. Since peripheral blood contains more T-lymphocytes than bone marrow, the use of HSC from the peripheral blood increases the risk of graft-versus-host disease after allogeneic SCT. For patients with goodrisk leukemia, bone marrow is still preferred, but for patients with high-risk disease, peripheral blood SCT has become the therapy of choice.

Journal ArticleDOI
TL;DR: A model is proposed whereby exosomes produced by immature DC can function to maintain peripheral tolerance, while exosome produced by more mature DC can stimulate effector T cells.
Abstract: The capacity of antigen presenting dendritic cells (DC) to function in both tolerance and immunity is now well documented. The function and characteristics of different DC subsets are reviewed here and their capacity to activate T cells under different conditions of maturation and activation is discussed. The immunogenic potential of exosomes produced by DC is also considered in light of evidence that the capacity of exosomes to activate T cells for tolerance or immunity appears to mirror that of the parent DC. A model is proposed whereby exosomes produced by immature DC can function to maintain peripheral tolerance, while exosomes produced by more mature DC can stimulate effector T cells.

Journal ArticleDOI
TL;DR: The role of telomere and telomerase in cancer pathogenesis and the dynamics of the telomeres length in different cell types are described and the principle and comparative evaluation of these methods are reviewed.
Abstract: Human telomeres are composed of long repeating sequences of TTAGGG, associated with a variety of telomere-binding proteins. Its function as an end-protector of chromosomes prevents the chromosome from end-to-end fusion, recombination and degradation. Telomerase acts as reverse transcriptase in the elongation of telomeres, which prevent the loss of telomeres due to the end replication problems. However, telomerase activity is detected at low level in somatic cells and high level in embryonic stem cells and tumor cells. It confers immortality to embryonic stem cells and tumor cells. In most tumor cells, telomeres are extremely short and stable. Telomere length is an important indicator of the telomerase activity in tumor cells and it may be used in the prognosis of malignancy. Thus, the assessment of telomeres length is of great experimental and clinical significance. This review describes the role of telomere and telomerase in cancer pathogenesis and the dynamics of the telomeres length in different cell types. The various methods of measurement of telomeres length, i.e. southern blot, hybridization protection assay, fluorescence in situ hybridization, primed in situ, quantitative PCR and single telomere length analysis are discussed. The principle and comparative evaluation of these methods are reviewed. The detection of G-strand overhang by telomeric-oligonucleotide ligation assay, primer extension/nick translation assay and electron microscopy are briefly discussed.

Journal ArticleDOI
TL;DR: It is proposed that H. pylori is involved in the pathogenesis and pathophysiology of these autoimmune disorders, and this organism might trigger autoimmune pancreatitis through induction of autoimmunity and apoptosis.
Abstract: Autoimmune pancreatitis, an inflammatory process of the pancreas due to an autoimmune mechanism establishing etiology of chronic pancreatitis, is characterized by the presence of autoantibodies, hypergammaglobulinemia, pancreatic enlargement, pancreatic duct strictures, and pathologic features of fibrotic changes with intense, mainly lymphocytic infiltrations, which may contribute to tissue destruction probably by apoptosis. In almost 60% of the cases, this type of pancreatitis coexists with other autoimmune diseases such as Sjogren's syndrome, sclerosing extrahepatic cholangitis, primary biliary cirrhosis, autoimmune hepatitis, or other extrapancreatic disorders, and recently with gastric peptic ulceration. The diversity of extrapancreatic lesions with similar histopathologic findings suggests general involvement of the digestive system in this disease, although the presence of such involvement has not been fully elucidated. Similarly, Helicobacter pylori (H. pylori) infection, a well known cause of gastric ulcer, has been associated, via molecular mimicry of host structures by its constituents with the same autoimmune conditions, also characterized by fibrotic changes and/or lymphoplasmacytic inflammations, accompanied by aberrations of T cell apoptosis that contribute to hepatobiliary- or extrahepatic-tissue destruction. Considering that H. pylori is involved in the pathogenesis and pathophysiology of these autoimmune disorders, we propose that this organism might trigger autoimmune pancreatitis through induction of autoimmunity and apoptosis.

Journal ArticleDOI
TL;DR: Molecular, cellular and physiologic analyses demonstrate that ES cell‐derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development, and the possible use of ES cell-derived CARDIomyocytes as source of donor cells is proposed.
Abstract: Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.

Journal ArticleDOI
TL;DR: The roles of EPCs and SMPCs in the development of vascular disease are reviewed by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.
Abstract: Stem cell research has the potential to provide solutions to many chronic diseases via the field of regeneration therapy. In vascular biology, endothelial progenitor cells (EPCs) have been identified as contributing to angiogenesis and hence have therapeutic potential to revascularise ischaemic tissues. EPCs have also been shown to endothelialise vascular grafts and therefore may contribute to endothelial maintenance. EPC number has been shown to be reduced in patients with cardiovascular disease, leading to speculation that atherosclerosis may be caused by a consumptive loss of endothelial repair capacity. Animal experiments have shown that EPCs reendothelialise injured vessels and that this reduces neointimal formation, confirming that EPCs have an atheroprotective effect. Smooth muscle cell accumulation in the neointimal space is characteristic of many forms of atherosclerosis, however the source of these cells is now thought to be from smooth muscle progenitor cells (SMPCs) rather than the adjacent media. There is evidence for the presence of SMPCs in the adventitia of animals and that SMPCs circulate in human blood. There is also data to support SMPCs contributing to neointimal formation but their origin remains unknown. This article will review the roles of EPCs and SMPCs in the development of vascular disease by examining experimental data from in vitro studies, animal models of atherosclerosis and clinical studies.

Journal ArticleDOI
TL;DR: A new model is proposed in which there are 2 populations of pacemaker cells, high frequency atypical SMC and lower frequency ICC‐like cells, both of which can drive electrically‐quiescent typical SMC.
Abstract: Autorhythmicity in the upper urinary tract (UUT) has long been considered to arise in specialized atypical smooth muscle cells (SMC) predominately situated in the most proximal regions of the pyeloureteric system. These atypical SMC pacemakers have been thought to trigger adjacent electrically-quiescent typical SMC to fire action potentials which allow an influx of Ca2+ and the generation of muscle contraction. More recently, the presence of cells with many of the morphological, electrical and immunohistochemical characteristics of interstitial cells of Cajal (ICC), the pacemaker cells of the gastrointestinal tract, have been located in many regions of both the upper and lower urinary tract. This article reviews the evidence from the literature and from our laboratory supporting a role of both atypical SMC and ICC-like cells in the initiation and propagation of pyeloureteric peristalsis in the UUT. We propose a new model in which there are 2 populations of pacemaker cells, high frequency atypical SMC and lower frequency ICC-like cells, both of which can drive electrically-quiescent typical SMC. The relative presence of these 2 populations of pacemaker cells and the relatively-long refractoriness of typical SMC determines the decreasing frequency of contraction with distance from the renal fornix. In the absence of the proximal pacemaker drive from atypical SMC after pyeloureteral/ureteral obstruction or surgery, ICC-like cell pacemaking provides a compensatory mechanism allowing the ureter to maintain rudimentary peristaltic waves and movement of urine from the pyelon towards the bladder.

Journal ArticleDOI
TL;DR: This “point of view” continues the discussion on the criteria that should be used to identify ICC outside the musculature of the gut.
Abstract: Santiago Ramon y Cajal observed a special cell type that appeared to function as endstructures of the intrinsic nervous system in several organs. These cells were structurally and functionally further characterized in the gut musculature and named interstitial cells of Cajal (ICC). In recent years, interstitial cells have been identified in the vasculature, urinary tract, glands and other organs. Their morphologies and functions are just beginning to be clarified. It is likely that amongst them, subtypes will be discovered that warrant the classification of interstitial cells of Cajal. This "point of view" continues the discussion on the criteria that should be used to identify ICC outside the musculature of the gut.