scispace - formally typeset
Search or ask a question
JournalISSN: 0921-0296

Journal of Intelligent and Robotic Systems 

Springer Science+Business Media
About: Journal of Intelligent and Robotic Systems is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Robot & Computer science. It has an ISSN identifier of 0921-0296. Over the lifetime, 3440 publications have been published receiving 77183 citations. The journal is also known as: Journal of intelligent & robotic systems.


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this paper is to provide an overview of existing motion planning algorithms while adding perspectives and practical examples from UAV guidance approaches.
Abstract: A fundamental aspect of autonomous vehicle guidance is planning trajectories. Historically, two fields have contributed to trajectory or motion planning methods: robotics and dynamics and control. The former typically have a stronger focus on computational issues and real-time robot control, while the latter emphasize the dynamic behavior and more specific aspects of trajectory performance. Guidance for Unmanned Aerial Vehicles (UAVs), including fixed- and rotary-wing aircraft, involves significant differences from most traditionally defined mobile and manipulator robots. Qualities characteristic to UAVs include non-trivial dynamics, three-dimensional environments, disturbed operating conditions, and high levels of uncertainty in state knowledge. Otherwise, UAV guidance shares qualities with typical robotic motion planning problems, including partial knowledge of the environment and tasks that can range from basic goal interception, which can be precisely specified, to more general tasks like surveillance and reconnaissance, which are harder to specify. These basic planning problems involve continual interaction with the environment. The purpose of this paper is to provide an overview of existing motion planning algorithms while adding perspectives and practical examples from UAV guidance approaches.

714 citations

Journal ArticleDOI
TL;DR: Two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems.
Abstract: A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot uses two-dimensional laser range scans for localization, it is difficult to accurately detect and localize landmarks in the environment (such as corners and occlusions) from the range scans. In this paper, we develop two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems. The first algorithm is based on matching data points with tangent directions in two scans and minimizing a distance function in order to solve the displacement between the scans. The second algorithm establishes correspondences between points in the two scans and then solves the point-to-point least-squares problem to compute the relative pose of the two scans. Our methods work in curved environments and can handle partial occlusions by rejecting outliers.

669 citations

Journal ArticleDOI
TL;DR: The outline to mapless navigation includes reactive techniques based on qualitative characteristics extraction, appearance-based localization, optical flow, features tracking, plane ground detection/tracking, etc... the recent concept of visual sonar has also been revised.
Abstract: Mobile robot vision-based navigation has been the source of countless research contributions, from the domains of both vision and control. Vision is becoming more and more common in applications such as localization, automatic map construction, autonomous navigation, path following, inspection, monitoring or risky situation detection. This survey presents those pieces of work, from the nineties until nowadays, which constitute a wide progress in visual navigation techniques for land, aerial and autonomous underwater vehicles. The paper deals with two major approaches: map-based navigation and mapless navigation. Map-based navigation has been in turn subdivided in metric map-based navigation and topological map-based navigation. Our outline to mapless navigation includes reactive techniques based on qualitative characteristics extraction, appearance-based localization, optical flow, features tracking, plane ground detection/tracking, etc... The recent concept of visual sonar has also been revised.

649 citations

Journal ArticleDOI
TL;DR: A tentatively comprehensive tutorial report of the most recent literature on kinematic control of redundant robot manipulators lends some perspective to the most widely adopted on-line instantaneous control solutions, namely those based on the simple manipulator's Jacobian.
Abstract: In this paper, we present a tentatively comprehensive tutorial report of the most recent literature on kinematic control of redundant robot manipulators. Our goal is to lend some perspective to the most widely adopted on-line instantaneous control solutions, namely those based on the simple manipulator's Jacobian, those based on the local optimization of objective functions in the null space of the Jacobian, those based on the task space augmentation by additional constraint tasks (with task priority), and those based on the construction of inverse kinematic functions.

581 citations

Journal ArticleDOI
TL;DR: It is argued that, by employing model-based reinforcement learning, the—now limited—adaptability characteristics of robotic systems can be expanded, and model- based reinforcement learning exhibits advantages that makes it more applicable to real life use-cases compared to model-free methods.
Abstract: Reinforcement learning is an appealing approach for allowing robots to learn new tasks. Relevant literature reveals a plethora of methods, but at the same time makes clear the lack of implementations for dealing with real life challenges. Current expectations raise the demand for adaptable robots. We argue that, by employing model-based reinforcement learning, the--now limited--adaptability characteristics of robotic systems can be expanded. Also, model-based reinforcement learning exhibits advantages that makes it more applicable to real life use-cases compared to model-free methods. Thus, in this survey, model-based methods that have been applied in robotics are covered. We categorize them based on the derivation of an optimal policy, the definition of the returns function, the type of the transition model and the learned task. Finally, we discuss the applicability of model-based reinforcement learning approaches in new applications, taking into consideration the state of the art in both algorithms and hardware.

394 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023115
2022265
2021235
2020249
2019213
2018155