scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Medical Physics in 2016"


Journal ArticleDOI
TL;DR: Results suggest that HES can perform a radioprotection action and that the protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.
Abstract: This study was carried out to evaluate radioprotective effects of hesperidin (HES) administration before the irradiation on the cardiac oxidative stress and histopathological changes in an experimental rat model. The cardiovascular complications of radiation exposure cause morbidity and mortality in patients who received radiotherapy. HES, an antioxidant flavonoid found in citrus fruits, suggests the protection against the tissue damage. Fifty-eight rats were divided into four groups: Group 1 received phosphate buffered saline (PBS) and sham radiation; Group 2, HES and sham radiation; Group 3, PBS and radiation; and Group 4, HES and radiation. The rats were exposed to single dose of 18 Gy of 6 MV X-ray. One hundred milligrams per kilogram doses of HES was administered for 7 days before irradiation. The estimation of superoxide dismutase (SOD), malondialdehyde (MDA), and histopathological analyses was performed at 24 h and 8 weeks after radiation exposure. The irradiation of chest area resulted in an elevated MDA level and decreased SOD activity. Moreover, long-term pathological lesions of radiation were inflammation, fibrosis, the increased number of mast cells and macrophages, and development of plaque, vascular leakage, myocardial degeneration, and myocyte necrosis. Although the administration of HES decreases inflammation, fibrosis, mast cell and macrophage numbers, and myocyte necrosis, it did not result in reduced thrombus, myocardium degeneration, and vascular leakage. In conclusion, these results suggest that HES can perform a radioprotection action. The protective effect of HES may be attributable to its immunomodulatory effects and free radical-scavenging properties.

40 citations


Journal ArticleDOI
TL;DR: It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT.
Abstract: Modern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.

36 citations


Journal ArticleDOI
TL;DR: Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.
Abstract: The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (D S), depth of dose maximum (D max), percentage dose at 10 cm (D 10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative D S(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D 10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.

21 citations


Journal ArticleDOI
TL;DR: The studies indicated that CyberKnife M6™ IRIS and InCise MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS.
Abstract: The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC) (Accuray Inc. Synnyvale, CA) for prostate stereotactic body radiation therapy (SBRT). Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV) was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI), Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR) dose sparing was analyzed by the bladder wall Dmax and V37Gy, rectum Dmax and V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs) and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time.

19 citations


Journal ArticleDOI
TL;DR: It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues, and this could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy.
Abstract: This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8-335 cm 3 ) and 50 VMAT patients (planning target volume = 120-351 cm 3 ) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D 99% of planning target volume; D 30% , D 50% , V 30 Gy and V 35 Gy of rectum and bladder; D 5% , V 14 Gy , V 22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy.

19 citations


Journal ArticleDOI
TL;DR: Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases, and could be used to improve the treatment plan.
Abstract: This study investigated the dosimetric differences in treatment plans from flattened and flattening filter-free (FFF) beams from the TrueBeam System. A total of 104 treatment plans with static (sliding window) intensity-modulated radiotherapy beams and volumetric-modulated arc therapy (VMAT) beams were generated for 15 patients involving three cancer sites. In general, the FFF beam provides similar target coverage as the flattened beam with improved dose sparing to organ-at-risk (OAR). Among all three cancer sites, the head and neck showed more important differences between the flattened beam and FFF beam. The maximum reduction of the FFF beam in the mean dose reached up to 2.82 Gy for larynx in head and neck case. Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases. Thus, 10 MV FFF beam could be used to improve the treatment plan.

18 citations


Journal ArticleDOI
TL;DR: The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting the validation of dose mapping and accumulation operations in regions with heterogeneous mass, and dose distributions.
Abstract: Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting the validation of dose mapping and accumulation operations in regions with heterogeneous mass, and dose distributions.

16 citations


Journal ArticleDOI
TL;DR: The central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam and flattening filter free therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film were evaluated.
Abstract: The purpose of this study was to evaluate the central axis dose in the build-up region and the surface dose of a 6 MV and 10 MV flattened photon beam (FB) and flattening filter free (FFF) therapeutic photon beam for different square field sizes (FSs) for a Varian Truebeam linear accelerator using parallel-plate ionization chamber and Gafchromic film. Knowledge of dosimetric characteristics in the build-up region and surface dose of the FFF is essential for clinical care. The dose measurements were also obtained empirically using two different commonly used dosimeters: a p-type photon semiconductor dosimeter and a cylindrical ionization chamber. Surface dose increased linearly with FS for both FB and FFF photon beams. The surface dose values of FFF were higher than the FB FSs. The measured surface dose clearly increases with increasing FS. The FFF beams have a modestly higher surface dose in the build-up region than the FB. The dependence of source to skin distance (SSD) is less significant in FFF beams when compared to the flattened beams at extended SSDs.

14 citations



Journal ArticleDOI
TL;DR: A novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom is attempted, which holds an ion chamber and film to measure delivered radiation intensity and Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.
Abstract: Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT) is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany) in conjunction with "Real-time position management" (Varian, USA) to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT) film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA) phantom (Computerized Imaging Reference Systems type) is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%). Gamma value evaluated from EBT film shows passing rates 92-99% (96.63 ± 3.84%) for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

10 citations


Journal ArticleDOI
TL;DR: The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of targetand OARs.
Abstract: To investigate the dose-volume variations of planning target volume (PTV) and organ at risks (OARs) in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT) when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0(®) with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV) volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°), and for double arc VMAT plans (0-0°, 15°-345, 30-330°, 45-315°, 60-300°, 75-285°, 90-270°) using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI), dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV) calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx(®) and three-dimensional IBA Compass(®) program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm) analysis. A higher D95 (PTV) were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60-300° and 75-285° collimator angles. However, lower rectum doses obtained for 75-285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV), we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm) analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate cancer patients in our clinic with double arc VMAT and 75°-285° collimator angles.

Journal ArticleDOI
TL;DR: Proposed approach provides a quick and practical way of estimating grid performance for different digital fluoroscopic examinations and the correlation coefficients between BF values obtained using two approaches (grid parameters and image quality metrics) were in good agreement.
Abstract: Antiscatter grids improve the X-ray image contrast at a cost of patient radiation doses. The choice of appropriate grid or its removal requires a good knowledge of grid characteristics, especially for pediatric digital imaging. The aim of this work is to understand the relation between grid performance parameters and some numerical image quality metrics for digital radiological examinations. The grid parameters such as bucky factor (BF), selectivity (Σ), Contrast improvement factor (CIF), and signal-to-noise improvement factor (SIF) were determined following the measurements of primary, scatter, and total radiations with a digital fluoroscopic system for the thicknesses of 5, 10, 15, 20, and 25 cm polymethyl methacrylate blocks at the tube voltages of 70, 90, and 120 kVp. Image contrast for low- and high-contrast objects and high-contrast spatial resolution were measured with simple phantoms using the same scatter thicknesses and tube voltages. BF and SIF values were also calculated from the images obtained with and without grids. The correlation coefficients between BF values obtained using two approaches (grid parameters and image quality metrics) were in good agreement. Proposed approach provides a quick and practical way of estimating grid performance for different digital fluoroscopic examinations.


Journal ArticleDOI
TL;DR: The protective role of 14 days RJ consumption against radiation-induced apoptosis in human peripheral blood leukocytes is revealed, according to which a significant decrease was found after 14 Days RJ consumption.
Abstract: The present work was designed to assess the radioprotective effect of royal jelly (RJ) against radiation-induced apoptosis in human peripheral blood leukocytes. In this study, peripheral blood samples were obtained on days 0, 4, 7, and 14 of the study from six healthy male volunteers taking a 1000 mg RJ capsule orally per day for 14 consecutive days. On each sampling day, all collected whole blood samples were divided into control and irradiated groups which were then exposed to the selected dose of 4 Gy X-ray. Percentage of apoptotic cells (Ap %) was evaluated for all samples immediately after irradiation (Ap0) and also after a 24 h postirradiation incubation at 37°C in 5% CO2 (Ap24) by the use of neutral comet assay. Concerning Ap0, collected data demonstrated that the percentage of apoptotic cells in both control and irradiated groups did not significantly change during the study period. However, with respect to Ap24, the percentage of apoptotic cells in irradiated groups gradually reduced during the experiment, according to which a significant decrease was found after 14 days RJ consumption (P = 0.002). In conclusion, the present study revealed the protective role of 14 days RJ consumption against radiation-induced apoptosis in human peripheral blood leukocytes.

Journal ArticleDOI
TL;DR: The study showed that there was a significant difference in PTV coverage between 2 plans and the doses to various OARs showed a nonsignificant increase in the plan sum, suggesting the correction of translational setup errors is essential for IGRT treatment in terms of delivery of planned optimal doses to target volume.
Abstract: To assess and analyze the impact of setup uncertainties on target volume coverage and doses to organs at risk (OAR) in head and neck cancer (HNC) patients treated by image-guided radiotherapy (IGRT). Translational setup errors in 25 HNC patients were observed by kilovoltage cone beam computed tomography (kV CBCT). Two plans were generated. Plan one - the original plan which was the initially optimized and approved plan of the patient. All patients were treated according to their respective approved plans at a defined isocenter. Plan two - the plan sum which was the sum of all plans recalculated at a different isocenter according to setup errors in x, y, and z-direction. Plan sum was created to evaluate doses that would have been received by planning target volume (PTV) and OARs if setup errors were not corrected. These 2 plans were analyzed and compared in terms of target volume coverage and doses to OARs. A total 503 kV CBCT images were acquired for evaluation of setup errors in 25 HNC patients. The systematic (mean) and random errors (standard deviation) combined for 25 patients in x, y, and z directions were 0.15 cm, 0.21 cm, and 0.19 cm and 0.09 cm, 0.12 cm, and 0.09 cm, respectively. The study showed that there was a significant difference in PTV coverage between 2 plans. The doses to various OARs showed a nonsignificant increase in the plan sum. The correction of translational setup errors is essential for IGRT treatment in terms of delivery of planned optimal doses to target volume.

Journal ArticleDOI
TL;DR: Clinical cases from the old version of Eclipse treatment planning system were compared keeping all the patient data intact including the monitor units and comparing the differences in dose calculations using dose volume histogram (DVH) analysis, which revealed minor difference in intensity-modulated radiation therapy (IMRT) plans.
Abstract: Recently, Eclipse treatment planning system (TPS) version 8.8 was upgraded to the latest version 13.6. It is customary that the vendor gives training on how to upgrade the existing software to the new version. However, the customer is provided less inner details about changes in the new software version. According to manufacturer, accuracy of point dose calculations and irregular treatment planning is better in the new version (13.6) compared to the old version (8.8). Furthermore, the new version uses voxel-based calculations while the earlier version used point dose calculations. Major difference in intensity-modulated radiation therapy (IMRT) plans was observed between the two versions after re-optimization and re-calculations. However, minor difference was observed for IMRT cases after performing only re-calculations. It is recommended TPS quality assurance to be performed after any major upgrade of software. This can be done by performing dose calculation comparisons in TPS. To assess the difference between the versions, 25 clinical cases from the old version were compared keeping all the patient data intact including the monitor units and comparing the differences in dose calculations using dose volume histogram (DVH) analysis. Along with DVH analysis, uniformity index, conformity index, homogeneity index, and dose spillage index were also compared for both versions. The results of comparative study are presented in this paper.

Journal ArticleDOI
TL;DR: The anisotropy function of BRIT 192Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source and the gL(r) values of this source show differences about 2% at r = 6 cm and up to 13% atr = 12 cm, which is due to differences in phantom dimensions involved in the calculations.
Abstract: Clinical application using high-dose rate (HDR) (192)Ir sources in remote afterloading technique is a well-established treatment method. In this direction, Board of Radiation and Isotope Technology (BRIT) and Bhabha Atomic Research Centre, India, jointly indigenously developed a remote afterloading machine and (192)Ir HDR source. The two-dimensional (2D) dose distribution and dosimetric parameters of the BRIT (192)Ir HDR source are generated using EGSnrc Monte Carlo code system in a 40 cm dia × 40 cm height cylindrical water phantom. The values of air-kerma strength and dose rate constant for BRIT (192)Ir HDR source are 9.894 × 10(-8) ± 0.06% UBq(-1) and 1.112 ± 0.11% cGyh(-1)U(-1), respectively. The values of radial dose function (gL(r)) of this source compare well with the corresponding values of BEBIG, Flexisource, and GammaMed 12i source models. This is because of identical active lengths of the sources (3.5 mm) and the comparable phantom dimensions. A comparison of gL(r) values of BRIT source with microSelectron-v1 show differences about 2% at r = 6 cm and up to 13% at r = 12 cm, which is due to differences in phantom dimensions involved in the calculations. The anisotropy function of BRIT (192)Ir HDR source is comparable with the corresponding values of microSelectron-v1 (classic) HDR source.

Journal ArticleDOI
TL;DR: A Monte Carlo study based on the phantom of a 11-year-old Iranian boy, the effect of using an optimized shield on dose reduction to body organs was quantified and showed that there is 50%-62% reduction in amounts of dose for organs located fully or partly in the scan range.
Abstract: A method for minimizing organ dose during computed tomography examinations is the use of shielding to protect superficial organs. There are some scientific reports that usage of shielding technique reduces the surface dose to patients with no appreciable loss in diagnostic quality. Therefore, in this Monte Carlo study based on the phantom of a 11-year-old Iranian boy, the effect of using an optimized shield on dose reduction to body organs was quantified. Based on the impact of shield on image quality, lead shields with thicknesses of 0.2 and 0.4 mm were considered for organs exposed directly and indirectly in the scan range, respectively. The results showed that there is 50%-62% reduction in amounts of dose for organs located fully or partly in the scan range at different tube voltages and modeling the true location of all organs in human anatomy, especially the ones located at the border of the scan, range affects the results up to 49%.

Journal ArticleDOI
TL;DR: This work investigates whether Chang's attenuation correction technique can be applied to both acquisition modes by the development of a Chang's formulation-based algorithm that is applicable to both modes of dual-detector gamma camera acquisition.
Abstract: The acquisition and processing of the Jaszczak phantom is a recommended test by the American College of Radiology for evaluation of gamma camera system performance. To produce the reconstructed phantom image for quality evaluation, attenuation correction is applied. The attenuation of counts originating from the center of the phantom is greater than that originating from the periphery of the phantom causing an artifactual appearance of inhomogeneity in the reconstructed image and complicating phantom evaluation. Chang's mathematical formulation is a common method of attenuation correction applied on most gamma cameras that do not require an external transmission source such as computed tomography, radionuclide sources installed within the gantry of the camera or a flood source. Tomographic acquisition can be obtained in two different acquisition modes for dual-detector gamma camera; one where the two detectors are at 180° configuration and acquire projection images for a full 360°, and the other where the two detectors are positioned at a 90° configuration and acquire projections for only 180°. Though Chang's attenuation correction method has been used for 360° angle acquisition, its applicability for 180° angle acquisition remains a question with one vendor's camera software producing artifacts in the images. This work investigates whether Chang's attenuation correction technique can be applied to both acquisition modes by the development of a Chang's formulation-based algorithm that is applicable to both modes. Assessment of attenuation correction performance by phantom uniformity analysis illustrates improved uniformity with the proposed algorithm (22.6%) compared to the camera software (57.6%).

Journal ArticleDOI
TL;DR: It was concluded that EUD optimized plans offer added advantage of less OAR dose as well as selectively boosting dose to gross tumor volume and inhomogeneous dose could be intentionally dumped on the high-risk volume to achieve high local control.
Abstract: In this study, we intend to estimate the effects of normal tissue sparing between intensity modulated radiotherapy (IMRT) treatment plans generated with and without a dose volume (DV)-based physical cost function using equivalent uniform dose (EUD). Twenty prostate cancer patients were retrospectively selected for this study. For each patient, two IMRT plans were generated (i) EUD-based optimization with a DV-based physical cost function to control inhomogeneity (EUDWith DV) and (ii) EUD-based optimization without a DV-based physical cost function to allow inhomogeneity (EUDWithout DV). The generated plans were prescribed a dose of 72 Gy in 36 fractions to planning target volume (PTV). Mean dose, D30%, and D5% were evaluated for all organ at risk (OAR). Normal tissue complication probability was also calculated for all OARs using BioSuite software. The average volume of PTV for all patients was 103.02 ± 27 cm(3). The PTV mean dose for EUDWith DV plans was 73.67 ± 1.7 Gy, whereas for EUDWithout DV plans was 80.42 ± 2.7 Gy. It was found that PTV volume receiving dose more than 115% of prescription dose was negligible in EUDWith DV plans, whereas it was 28% in EUDWithout DV plans. In almost all dosimetric parameters evaluated, dose to OARs in EUDWith DV plans was higher than in EUDWithout DV plans. Allowing inhomogeneous dose (EUDWithout DV) inside the target would achieve better normal tissue sparing compared to homogenous dose distribution (EUDWith DV). Hence, this inhomogeneous dose could be intentionally dumped on the high-risk volume to achieve high local control. Therefore, it was concluded that EUD optimized plans offer added advantage of less OAR dose as well as selectively boosting dose to gross tumor volume.

Journal ArticleDOI
TL;DR: From the simulation results, it is observed that the proposed framework with CD based prior is performing better in comparison to other priors in consideration.
Abstract: The proposed framework is obtained by casting the noise removal problem into a variational framework. This framework automatically identifies the various types of noise present in the magnetic resonance image and filters them by choosing an appropriate filter. This filter includes two terms: the first term is a data likelihood term and the second term is a prior function. The first term is obtained by minimizing the negative log likelihood of the corresponding probability density functions: Gaussian or Rayleigh or Rician. Further, due to the ill-posedness of the likelihood term, a prior function is needed. This paper examines three partial differential equation based priors which include total variation based prior, anisotropic diffusion based prior, and a complex diffusion (CD) based prior. A regularization parameter is used to balance the trade-off between data fidelity term and prior. The finite difference scheme is used for discretization of the proposed method. The performance analysis and comparative study of the proposed method with other standard methods is presented for brain web dataset at varying noise levels in terms of peak signal-to-noise ratio, mean square error, structure similarity index map, and correlation parameter. From the simulation results, it is observed that the proposed framework with CD based prior is performing better in comparison to other priors in consideration.

Journal ArticleDOI
TL;DR: Investigation in 15 left lung cancer patients comparing analytical anisotropic algorithm (AAA) versus Acuros XB algorithm found significant statistical differences in the dose parameters for the OARs, but the magnitude of the differences is too small to cause any clinically observable effect.
Abstract: The aim of the present study was to investigate the dose-volume variations of planning target volume (PTV) and organs at risks (OARs) in 15 left lung cancer patients comparing analytical anisotropic algorithm (AAA) versus Acuros XB algorithm. Originally, all plans were created using AAA with a template of dose constraints and optimization parameters, and the patients were treated using intensity modulated radiotherapy. In addition, another set of plans was created by performing only dose calculations using Acuros algorithm without doing any reoptimization. Thereby, in both set of plans, the entire plan parameters, namely, beam angle, beam weight, number of beams, prescribed dose, normalization point, region of interest constraints, number of monitor units, and plan optimization were kept constant. The evaluated plan parameters were PTV coverage at dose at 95% volume (TV95) of PTV (D95), the dose at 5% of PTV (D5), maximum dose (Dmax), the mean dose (Dmean), the percent volume receiving 5 Gy (V5), 20 Gy (V20), 30 Gy (V30) of normal lung at risk (left lung- gross target volume [GTV], the dose at 33% volume (D33), at 67% volume (D67), and the Dmean (Gy) of the heart, the Dmax of the spinal cord. Furthermore, homogeneity index (HI) and conformity index were evaluated to check the quality of the plans. Significant statistical differences between the two algorithms, P < 0.05, were found in D95, Dmax, TV95, and HI of PTV. Furthermore, significant statistical differences were found in the dose parameters for the OARs, namely, V5, V20, and V30 of left lung-GTV, right lung (Dmean), D33, and Dmean of the heart, and Dmax of the spine, respectively. Although statistical differences do exist, the magnitude of the differences is too small to cause any clinically observable effect.

Journal ArticleDOI
TL;DR: Nylon could be used as a substitute material for CT dosimetry phantom to enable measurements and adjustment factors are given which could beused to estimate PMMA values for making comparisons with displayed values.
Abstract: The use of computed tomography (CT) scanning has been growing steadily. Therefore, CT dose measurement is becoming increasingly important for patient protection and optimization. A phantom is an important tool for dose measurement. This paper focuses on the evaluation of a CT dosimetry phantom made from nylon, instead of the standard polymethyl methacrylate (PMMA), which is not readily available or is too expensive in some countries. Comparison between phantoms made from the two materials is made in terms of measurements of the CT dose indices (CTDI). These were measured for four different beam widths and kVp settings at the center and periphery in head and body phantoms made from both materials and weighted CTDIs (CTDIw) were calculated. CT numbers along the z-axis of the phantom were also measured at the center and four peripheral positions of each scanned slice to check phantom homogeneity. Results showed that values for the CTDIw measured in the nylon phantoms were slightly higher than those from the PMMA while CT numbers for nylon were lower than those of PMMA. This is because the mass attenuation coefficient of the nylon is higher. Nylon could be used as a substitute material for CT dosimetry phantom to enable measurements and adjustment factors are given which could be used to estimate PMMA values for making comparisons with displayed values.

Journal ArticleDOI
TL;DR: This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications, and shows that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBO treatments.
Abstract: Total body irradiation (TBI) treatments are mainly used in a preparative regimen for hematopoietic stem cell (or bone marrow) transplantation. Our standard clinical regimen is a 12 Gy/6 fraction bi-daily technique using 6MV X-rays at a large extended source to surface distance (SSD). This work investigates and quantifies the dose build-up characteristics and thus the requirements for bolus used for in vivo dosimetry for TBI applications. Percentage dose build-up characteristics of photon beams have been investigated at large extended SSDs using ionization chambers and Gafchromic film. Open field measurements at different field sizes and with differing scatter conditions such as the introduction of standard Perspex scattering plates at different distances to the measurement point were made in an effort to determine the required bolus/build-up material required for accurate determination of applied dose. Percentage surface dose values measured for open fields at 300 cm SSD were found to range from 20% up to 65.5% for fields 5 cm × 5 cm to 40 cm × 40 cm, respectively. With the introduction of 1 cm Perspex scattering plates used in TBI treatments, the surface dose values increased up to 83-90% (93-97% at 1 mm depth), depending on the position of the Perspex scattering plate compared to the measurement point. Our work showed that at least 5 mm water equivalent bolus/scatter material should be placed over the EBT3 film for accurate dose assessment for TBI treatments. Results also show that a small but measurable decrease in measured dose occurred with 5 mm water equivalent thick bolus material of areas '3 cm(2). As such, we recommend that 3 cm × 3 cm × 5 mm bolus build-up is the smallest size that should be placed over EBT3 Gafchromic film when used for accurate in vivo dosimetry for TBI applications.

Journal ArticleDOI
TL;DR: It is advisable to apply the IMRT technique to patients who need the femur heads and urinary bladder protected by exposing them to low irradiation doses, as well as the volume of normal tissue.
Abstract: This study describes a comparative analysis of treatment plans in 48 patients with prostate cancer treated with ionizing radiation. Each patient was subjected to the intensity-modulated radiation therapy (IMRT) and arc technique. In each treatment plan, the organs at risk were assessed: the urinary bladder, rectum and heads of the femur, as well as the volume of normal tissue. The following features were compared: treatment time, conformity indices for the planning target volume, mean doses and standard deviation in organs at risk, and organ volumes for each particular dose. The treatment period in the arc technique is 13.7% shorter than in the IMRT technique. Comparing the results of the IMRT and arc techniques (arc vs. IMRT), the mean values were 29.21 ± 12.91 Gy versus 28.36 ± 13.79 Gy for the bladder, 20.36 ± 3.16 Gy versus 18.17 ± 5.11 Gy for the right femoral head, and 18.98 ± 3.28 Gy versus 16.67 ± 5.15 Gy for the left femoral head. For the rectum, lower values were obtained after application of the arc technique, not the IMRT technique: 35.84 ± 12.28 Gy versus 35.90 ± 13.05 Gy. The results indicate that the applied therapy has a statistically significant influence on the volume for a particular dose with regard to the urinary bladder. It is advisable to apply the IMRT technique to patients who need the femur heads and urinary bladder protected by exposing them to low irradiation doses.

Journal ArticleDOI
TL;DR: The study shows that the newly developed well-type ionization chamber is reliable for air-kerma strength calibration and confirms that this chamber can be used for the calibrations of high-dose rate brachytherapy sources.
Abstract: The well-type ionization chamber has been designed for convenient use in brachytherapy source strength calibration. The chamber has a volume of 240 cm3, weight of 2.5 kg, and is open to atmospheric conditions. The well-type ionization chamber dosimetric characteristics such as leakage current, stability, scattering effect, ion collection efficiency, and nominal response with energy were studied. The evaluated dosimetric characteristics of well-type ionization chamber were compared with two other commercially available well-type ionization chambers. The study shows that the newly developed well-type ionization chamber is reliable for air-kerma strength calibration. The results obtained confirm that this chamber can be used for the calibrations of high-dose rate brachytherapy sources.

Journal ArticleDOI
TL;DR: It is shown that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy, and the proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition.
Abstract: Delivering radiotherapy to the postmastectomy chest wall can be achieved using matched electron fields. Surgical defects of the chest wall change the dose distribution of electrons. In this study, the improvement of dose homogeneity using simple, nonconformal techniques of thermoplastic bolus application on a defect is evaluated. The proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition. A modeled electron field of a patient with a postmastectomy inward surgical defect was planned. High energy electrons were delivered to the phantom in various settings, including no bolus, a bolus that filled the inward defect (PB0), a uniform thickness bolus of 5 mm (PB1), and two 5 mm boluses (PB2). A reduction of mean doses at the base of the defect was observed by any bolus application. PB0 increased the dose at central parts of the defect, reduced hot areas at the base of steep edges, and reduced dose to the lung and heart. Thermoplastic boluses that compensate a defect (PB0) increased the homogeneity of dose in a fixed depth from the surface; adversely, PB2 increased the dose heterogeneity. This study shows that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy.


Journal ArticleDOI
TL;DR: The study demonstrates that the algorithm can be effectively applied to IMRT scenarios to determine case specific and optimal number of beams for head and neck cases and shows a correlation of 0.88 between predicted and actual optimalNumber of beams.
Abstract: This paper aims to introduce an algorithm called "sensitivity-based beam number selection (SBBNS)" for fully automated and case-specific determination of an optimal number of equispaced beams in intensity-modulated radiotherapy (IMRT). We tested the algorithm in five head and neck cases of varying complexity. We used direct machine parameter optimization method coupled with Auto Plan feature available in Pinnacle TPS (Version 9.10.0) for optimization. The Pearson correlation test shows a correlation of 0.88 between predicted and actual optimal number of beams, which indicates that SBBNS method is capable of predicting optimal number of beams for head and neck cases with reasonable accuracy. The major advantage of the algorithm is that it intrinsically takes into account various case- and machine-specific factors for the determination of optimal number. The study demonstrates that the algorithm can be effectively applied to IMRT scenarios to determine case specific and optimal number of beams for head and neck cases.

Journal ArticleDOI
TL;DR: Radiological risk parameters associated with aircrew members traveling from Houston Intercontinental Airport to Lagos International Airport have been computed using computer software called EPCARD (version 3.2) and the mean annual effective dose of radiation was computed to be 2.94 mSv/year.
Abstract: Radiological risk parameters associated with aircrew members traveling from Houston Intercontinental Airport to Lagos International Airport have been computed using computer software called EPCARD (version 3.2). The mean annual effective dose of radiation was computed to be 2.94 mSv/year. This result is above the standard permissible limit of 1 mSv/year set for the public and pregnant aircrew members but below the limit set for occupationally exposed workers. The Risk of cancer mortality and excess career time cancer risk computed ranged from 3.5 × 10−5 to 24.5 × 10−5 (with average of 14.7 × 10−5 ) and 7 × 10−4 to 49 × 10−4 (with average of 29.4 × 10−4 ). Passengers and aircrew members should be aware of the extra cosmic radiation doses taken in during flights. All aircraft operators should monitor radiation doses incurred during aviation trips.