scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Virology in 1977"


Journal ArticleDOI
TL;DR: It is demonstrated that TM specifically inhibits the glycosylation of viral glycoproteins and that gly cosylation may be essential for the normal assembly of enveloped viral particles.
Abstract: Tunicamycin (TM), an antibiotic that inhibits the formation of N-acetylglucosamine-lipid intermediates, thereby preventing the glycosylation of newly synthesized glycoproteins, inhibits the growth of Sindbis virus and vesicular stomatitis virus in BHK cells At 05 mug of TM per ml, the replication of both viruses is inhibited 999% Noninfectious particles were not detected All the viral proteins were synthesized in the presence of TM, but the glycoproteins were selectively altered in that they migrated faster than normal viral glycoproteins when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting defective glycosylation Within 1 h after TM addition, [14C]glucosamine incorporation into glycoproteins was inhibited 20%, whereas [35S]methionine incorporation was unaffected By 2 to 3 h after TM addition, glucosamine incorporation had fallen to 15% of control value, with methionine incorporation being 60% of normal TM did not affect the growth of the nomenveloped encephalomyocarditis virus in BHK cells, demonstrating that TM is not a general inhibitor of protein synthesis These data demonstrate that TM specifically inhibits the glycosylation of viral glycoproteins and that glycosylation may be essential for the normal assembly of enveloped viral particles

242 citations


Journal ArticleDOI
TL;DR: Preliminary cRNA-DNA hybridization experiments, using viral DNAs from single or pooled plantar or hand warts, suggest that hand common warts are associated with viruses similar or related to ML HPV.
Abstract: A human papillomavirus (HPV) was isolated from the lesions of a patient (ML) bearing numerous hand common warts. This virus was compared with the well-characterized HPV found in typical plantar warts (plantar HPV). ML and plantar HPV DNAs have similar molecular weights (5.26 × 106 and 5.23 × 106, respectively) but were shown to be different by restriction enzyme analysis. When the cleavage products of both DNAs by endonuclease EcoRI, BamI, HpaI, or Hind were analyzed by electron microscopy, one, two, one, and four fragments were detected for ML HPV DNA instead of the two, one, two, and six fragments, respectively, detected for plantar HPV DNA. In contrast to plantar HPV DNA, a high proportion of ML HPV DNA molecules were resistant to these restriction enzymes. Most, if not all, of the molecules were either resistant to BamI and sensitive to EcoRI or sensitive to BamI and resistant to EcoRI. After denaturation and renaturation of the cleavage products of ML HPV DNA by a mixture of the two enzymes, the circular “heteroduplexes” formed showed one to three heterology loops corresponding to about 4 to 8% of the genome length. No sequence homology was detected between ML and plantar HPV DNAs by cRNA-DNA filter hybridization, by measuring the reassociation kinetics of an iodinated plantar HPV DNA in the presence of a 25-fold excess of ML HPV DNA, or by the heteroduplex technique. The two viruses had distinct electrophoretic polypeptide patterns and showed no antigenic cross-reaction by immunodiffusion or immunofluorescence techniques. Preliminary cRNA-DNA hybridization experiments, using viral DNAs from single or pooled plantar or hand warts, suggest that hand common warts are associated with viruses similar or related to ML HPV. The existence of at least two distinct types of HPVs that cause skin warts was demonstrated; they were provisionally called HPV type 1 and HPV type 2, with plantar HPV and ML HPV as prototypical viruses, respectively.

238 citations


Journal ArticleDOI
TL;DR: Analyses of sequence homologies among nucleic acids of different avian oncoviruses demonstrated substantial similarities within most of the genetic regions of these viruses.
Abstract: Viral complementary DNA (cDNA) sequences corresponding to the gag, pol, env, src, and c regions of the Rous sarcoma virus genome were selected by hybridizing viral cDNA to RNA from viruses that lack the env or src gene or to polyadenylic acid [poly(A)]-containing RNA fragments of different lengths and isolating either hybridized or unhybridized DNA. The specificities, genetic complexities, and map locations of the selected cDNA's were shown to be in good agreement with the size and map locations of the corresponding viral genes. Analyses of virus-specific RNA, using the specific cDNA's as molecular probes, demonstrated that oncovirus-infected cells contained genome-length (30-40S) RNA plus either one or two species of subgenome-length viral RNA. The size and genetic content of these RNAs varied, depending on the genetic makeup of the infecting virus, but in each case the smaller RNAs contained only sequences located near the 3' end of the viral genome. Three RNA species were detected in Schmidt-Ruppin Rous sarcoma virus-infected cells: 39S (genome-length) RNA; 28S RNA, with an apparent sequence of env-src-c-poly(A); and 21S RNA, with an apparent sequence of src-c-poly(A). Cells infected with the Bryan high-titer strain of Rous sarcoma virus, which lacks the env gene, contained genome-length (35S) RNA and 21S src-specific RNA, but not the 28S RNA species. Leukosis virus-infected cells contained two detectable RNA species: 35S (genome-length) RNA and 21S RNA, with apparent sequence env-c-poly(A). Since gag and pol sequences were detected only in genome-length RNAs, it seems likely that the full-length transcripts function as mRNA for these two genes. The 28S and 21S RNAs could be the active messengers for the env and src genes. Analyses of sequence homologies among nucleic acids of different avian oncoviruses demonstrated substantial similarities within most of the genetic regions of these viruses. However, the "common" region of Rous-associated virus-0, an endogenous virus, was found to differ significantly from that of the other viruses tested.

205 citations


Journal ArticleDOI
TL;DR: A clonal transformation assay for Epstein-Barr virus which uses adult human leukocytes as target cells and indicates that a single DNA-containing virus particle is sufficient to transform a cell.
Abstract: We have developed a clonal transformation assay for Epstein-Barr virus which uses adult human leukocytes as target cells. The target cells were isolated from Epstein-Barr seronegative donors, and the same donor's cells could be studied repeatedly over long periods of time. When these cells were transformed by Epstein-Barr virus and had proliferated sufficiently to be studied, they had an average cloning efficiency of 3%. Assuming this average cloning efficiency obtains at the onset of transformation, we calculate that transformation by Epstein-Barr virus leads to immortalization maximally of about 1 in 30 of the adult peripheral leukocytes exposed to the virus. Studying the number of colonies transformed as a function of the amount of virus to which the cells are exposed indicates that a single DNA-containing virus particle is sufficient to transform a cell. All of the transformed clones studied harbored viral DNA. This technique will now permit, for the first time, our studying clonal variations in adult peripheral leukocytes transformed by Epstein-Barr virus as a function of input multiplicity of the virus and of the donor's immune status.

201 citations


Journal ArticleDOI
TL;DR: Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases of cytomegalovirus-infected cells, and viral structural ICS proteins and glycoproteins were identified as infected-cell specific.
Abstract: In cytomegalovirus-infected cells, the rate of protein synthesis was detected as two peaks. One occurred during the early phase of infection, 0 to 36 h postinfection, and the other occurred during the late phase, after the initiation of viral DNA synthesis. Double-isotopic-label difference analysis demonstrated that host and viral proteins were synthesized simultaneously during both phases. In the early phase, approximately 70 to 90% of the total proteins synthesized were host proteins, whereas approximately 10 to 30% were viral, even at a multiplicity of infection of 20 PFU/cell. Virus-related proteins or glycoproteins were referred to as infected-cell specific (ICS). Two ICS glycoproteins (gp145 and 100) were clearly detectable and were synthesized preferentially in the early phase of infection. Their synthesis was concomitant with stimulation of the protein synthesis rate. In the late phase of infection, approximately 50 to 60% of the total protein synthesis was viral and approximately 40 to 50% was host. The ICS proteins and glycoproteins detected during the late phase of infection were viral structural proteins. Infectious virus was not detectable until 48 to 72 h postinfection. An inhibitor of viral DNA synthesis, phosphonoacetic acid, prevented the appearance of the late-phase ICS proteins and glycoproteins, but there was little or no effect on early ICS glycoprotein synthesis. Radiolabeled ICS proteins and glycoproteins were identified by their relative rates of synthesis, by their different electrophoretic mobilities compared with those of host proteins and host glycoproteins, and by their similar electrophoretic mobilities compared to those of proteins and glycoproteins associated with virions and dense bodies of cytomegalovirus. Structural viral antigens in the infected-cell extracts were removed by immunoprecipitation, using F(ab′)2 fragments of cytomegalovirus-specific antibodies, and identified as described above. The last two criteria were used to identify viral structural ICS proteins and glycoproteins. Although approximately 35 structural proteins were found to be associated with purified virions and dense bodies, the continued synthesis of host cell proteins complicated their identification in infected cells. Nevertheless, seven of the nine structural glycoproteins were identified as ICS glycoproteins.

193 citations


Journal ArticleDOI
TL;DR: From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion.
Abstract: Cell fractionation and protein electrophoresis were used to study the intracellular sites of synthesis and intermediate structures in the assembly of the virion proteins of vesicular stomatitis virus. Each of the three major virion proteins assembled into virions through a separable pathway. The nucleocapsid (N) protein was first a soluble protein and later incorporated into free, cytoplasmic nucleocapsids. A small amount of N protein was bound to membranes at later times, presumably representing either nucleocapsids in the process of budding or completed virions attached to the cell surface. The matrix (M) protein also appeared to be synthesized as a soluble protein, but was then directly incorporated into membranous structures with the same density as whole virus. Very little M protein was ever found in membranes banding at the density of plasma membranes. The M protein entered extracellular virus very quickly, as though it moved directly from a soluble state into budding virus. In contrast, the glycoprotein (G) was always membrane bound; it appeared to be directly inserted into membranes during its synthesis. Glycosylation of the G protein was completed only in smooth membrane fractions, possibly in the Golgi apparatus. After a minimum time of 15 min following its synthesis, G protein was incorporated into the surface plasma membrane, from which it was slowly shed into virions. These multiple processing steps probably account for its delayed appearance in virus. From this work it appears that the three major structural proteins come into the surface budding structure through independent pathways and together they coalesce at the plasma membrane to form the mature virion.

182 citations


Journal ArticleDOI
TL;DR: At least two types of virus-induced transformants are distinguished, and in one of them, the activity of the protein affected by the tsa mutation appears to be necessary for the expression of several of the characters defining the transformed state.
Abstract: A fibroblast line of the 3T3 type with a low saturation density was established from Fisher rat embryo cells. After infection with either wild-type or tsa mutant polyoma virus, transformants were isolated and cloned at 33 degrees C on the basis of their ability either to grow as dense foci on plastic in liquid medium (type N) or to form colonies in soft agar (type A). Polyoma T antigen was detected in all of the transformed lines. The following growth characteristics were studied for both types at 33 and 41 degrees C: saturation density, growth in soft agar and at a low serum concentration, colony-forming ability, and generation time. tsa-N transformants behaved at 33 degrees C similarly to transformed cells, but reverted at 41 degrees C to the nontransformed phenotype for all of these characters. tsa-A transformants and all of the wild-type transformants exhibited the transformed phenotype at both low and high temperatures. These results led us to distinguish at least two types of virus-induced transformants. In one of them, the activity of the protein affected by the tsa mutation appears to be necessary for the expression of several of the characters defining the transformed state.

180 citations


Journal ArticleDOI
TL;DR: The physical location of parental DNA sequences in 28 recombinant produced by crossing herpes simplex viruses (HSV) 1 and 2 are reported, consistent with the hypothesis that only one arrangement of the parental DNA participates in the generation of recombinants.
Abstract: We are reporting the physical location of parental DNA sequences in 28 recombinants produced by crossing herpes simplex viruses (HSV) 1 and 2. The parental crosses were of two kinds. In the first, temperature-sensitive mutants of HSV-1 and HSV-2 were crossed to produce wild-type recombinants. In the second, temperature-sensitive mutants of HSV-1 rendered resistant to phosphonoacetic acid were crossed with wild-type HSV-2, and recombinants that multiplied at nonpermissive temperature and were resistant to the drug were selected. The DNAs of the recombinants were mapped with XbaI, EcoRI, HpaI, HsuI, BglII, and, in some instances, KpnI restriction endonucleases. The results were as follows. (i) We established the colinear arrangements of HSV-1 and HSV-2 DNAs. (ii) There was extensive interchange of genomic regions, ranging from the exchange or the entire L of S component of HSV DNA to substitutions of regions within the same component. In some recombinants, the reiterated sequences ab and ac bracketing the L and S components of HSV DNA were heterotypic. Most recombinants grew well and showed no obvious defects. (iii) The number of crossover events ranged from one to as many as six. Although crossover events occurred throughout the DNA, some clustering of crossover events was observed. (iv) Analysis of recombinants permitted localization of several markers used in this study and appears to be a useful technique for marker mapping. (v) As previously reported, HSV DNA consists of four populations, differing in relative orientation of the L and S components. All recombinants could be displayed in one arrangement of L and S such that the number of crossover events was minimized. The data are consistent with the hypothesis that only one arrangement of the parental DNA participates in the generation of recombinants.

162 citations


Journal ArticleDOI
TL;DR: The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesv virus-infected cells.
Abstract: Herpes simplex virus-induced DNA polymerase purified by published methods was found to be contaminated with many others proteins, including virus structural proteins. Thus, DEAE-cellulose and phosphocellulose chromatography were used in combination with affinity chromatography to purify DNA polymerase from herpes simplex virus type 1- and type 2-infected cells. The purified enzyme retained unique features of the herpesvirus-induced DNA polymerase, including a requirement for high salt concentrations for maximal activity, a sensitivity to low phosphonoacetate concentrations, and the capacity to be neutralized by rabbit antiserum to herpesvirus-infected cells. By polyacrylamide gel electrophoresis, the purified DNA polymerase was associated with a virus-induced polypeptide of about 150,000 molecular weight.

157 citations


Journal ArticleDOI
TL;DR: The combination of electrophoretic variants among the RNAs and polypeptides of the reovirus serotypes gave electrophoreic markers in all 10 of theReovirus genes, which have usefulness in "mapping" the Reovirus genome.
Abstract: The virus-specific double-stranded genome RNA and polypeptides present in virions and cells infected with the three mammalian reovirus serotypes have been examined by co-electrophoresis in several different polyacrylamide gel systems. The double-stranded RNA and polypeptide species previously described for type 3 Dearing were found to have corresponding species in the other serotypes examined. In each serotype several RNA and polypeptide species were found to have different electrophoretic mobilities from the corresponding RNA or polypeptide species of type 3 Dearing. The combination of electrophoretic variants among the RNAs and polypeptides of the reovirus serotypes gave electrophoretic markers in all 10 of the reovirus genes. The usefulness of these electrophoretic markers in "mapping" the reovirus genome is discussed.

157 citations


Journal ArticleDOI
TL;DR: It is strongly suggested that HSV-1 DNA utilizes for its transcription a polymerase undistinguishable from host cell RNA polymerase B with respect to its sensitivity to amanitin.
Abstract: In herpes simplex virus type 1 (HSV-1)-infected HEp-2 cells, amanitin added before or at various times after infection always reduced viral multiplication. Also, the three waves of transcription of HSV-1 DNA, which led to the synthesis of alpha, beta-, and gamma-polypeptides, were all sensitive to amanitin in HEp-2 cells, and the amanitin-sensitive RNA polymerase activities of isolated nuclei were equally sensitive to the inhibitor before and during the infection. On the contrary, HSV-1 DNA transcription was totally unaffected by amanitin in AR1/9-5B cells, a mutant subline of CHO cells that possesses an amanitin-resistant RNA polymerase B. Together, these results strongly suggest that HSV-1 DNA utilizes for its transcription a polymerase undistinguishable from host cell RNA polymerase B with respect to its sensitivity to amanitin.

Journal ArticleDOI
TL;DR: A study of extraction conditions shows that the smaller proteins are easily generated during extraction and provides an explanation for the appearance of these proteins in some cells after extraction under unfavorable conditions.
Abstract: The A protein of simian virus 40 is phosphorylated in both productive and transforming infection. The phosphorylated amino acid has been identified as serine and has been localized in a single tryptic peptide of the protein. Because the A protein synthesized in infection by A mutants is phosphorylated to the same extent and in the same peptide as in infection by wild-type virus, the functional defect of the A mutants is apparently unrelated to phosphorylation. At least three distinct forms of the A protein with apparent molecular weights of 85,000, 88,000, and 100,000 can be identified in extracts of cells infected by wild-type virus. After exposure of cells to Nonidet P-40, the 85,000- and 88,000-dalton proteins were found in varying amounts in extracts of permissive cells but not in extracts of transformed cells. This finding raised the question of the possible functional importance of the smaller proteins in productive infection. However, the virtual absence of the 85,000- and 88,000-dalton proteins in some extracts of the fully permissive CV-1 cell line indicates that a conversion of the larger to the smaller forms of the A protein is not required in significant quantity for productive infection. Furthermore, a study of extraction conditions shows that the smaller proteins are easily generated during extraction and provides an explanation for the appearance of these proteins in some cells after extraction under unfavorable conditions.

Journal ArticleDOI
TL;DR: The observations are consistent with a simple model in which the binding of A protein at the origin of replication blocks either binding of RNA polymerase to the early promoter or its progress through the early gene(s).
Abstract: Cells infected by tsA mutants of simian virus 40 (SV40) overproduce early RNA. Overproduction results from failure of the temperature-sensitive A protein (T antigen) to inhibit early transcription. The amount of early RNA in the cytoplasm, determined quantitatively from the kinetics of hybridization to labeled complementary SV40 DNA, was elevated at both permissive (32°C) and nonpermissive (41°C) temperatures in all the early mutants tested (tsA7, -30, -58, and -209), but not in the late mutant tsB4. The amount of early RNA in a culture maintained at 32°C for 72 h and then shifted to 41°C was maximum when each cell was infected initially with at least one plaque-forming unit of tsA58. Azidocytidine (2′-deoxy-2′-azidocytidine), which inhibits initiation of DNA synthesis, did not cause overproduction of early RNA in cells infected with wild-type SV40, showing that the effect seen with tsA mutants is not due to interference with initiation of DNA synthesis per se. In parallel infections at 41°C, the amount of early RNA per copy of viral DNA was as much as 2,000 times greater with tsA58 than with wild-type SV40, even though there was no replication of the tsA58 DNA. Synthesis of late RNA could not be detected during the first 20 h of an infection by either virus at 32°C, indicating that late and early transcription are under different control. In three cell lines transformed by tsA mutants, the amount of early RNA increased moderately after a shift from 32 to 41°C, whereas with homologous cells transformed by wild-type virus, the amount of early RNA decreased, indicating that the A protein may be able to repress transcription of integrated SV40 DNA. All the observations are consistent with a simple model in which the binding of A protein at the origin of replication blocks either binding of RNA polymerase to the early promoter or its progress through the early gene(s).

Journal ArticleDOI
TL;DR: The results suggest that T-antigen may regulate its own production either by repressing the synthesis of early viral RNA or by stimulating the synthesisof late SV40 RNA or both, and overproduction of early SV40RNA appears to be correlated with defectiveness of the tsA mutant T- Antigen.
Abstract: Virus-specific RNA synthesized in monkey cells after infection by both wild-type simian virus 40 (SV40) and the early SV40 temperature-sensitive mutant tsA58 has been analyzed. The fraction of SV40-specific RNA increased throughout infection with either wild-type SV40 or with tsA58 in direct proportion to the accumulation of progeny DNA molecules, suggesting their role in the late transcriptional process. Cytoplasmic fractions from cells infected at various temperatures (31.5 to 41°C) by wild-type virus and harvested 48 h later contained 4 to 8% virus-specific RNA, of which 5 to 10% was early SV40 RNA. In contrast, though 5 to 8% of the cytoplasmic RNA from tsA 58-infected cells incubated at 31.5 to 37°C for 48 h was virus specific, the percentage of early virus-specific RNA ranged from 25 to 80% as the incubation temperature increased. In tsA58-infected cultures incubated for 48 h at 41°C (a temperature at which essentially no tsA 58 DNA synthesis occurred), only 0.4% of the cytoplasmic RNA was virus specific, but at least 90% of this RNA was early. In experiments where cells were inoculated at 32°C and shifted at 48 h postinfection to 40°C for various times, the percentage of virus-specific pulse-labeled RNA varied from 3.5 to 10.0%. Of the virus-specific RNA, early SV40 RNA ranged from 14 to 65% in tsA 58-infected cultures. Analogous studies with Sarkosyl-extracted viral transcription complexes to incorporate label into nascent (unprocessed) viral RNA yielded essentially identical results. This finding strongly suggests that the overproduction of early SV40 RNA occurs at the level of synthesis. While cytosine arabinoside effectively terminated most viral DNA replication in wild-type-infected cells, the ratio of early to late viral RNA remained less than 1:9. These results demonstrate that: (1) the amount of virus-specific RNA synthesized depends directly on the amount of viral DNA available for use as templates; once viral DNA replication has occurred, presumably providing progeny SV40 DNA molecules for templates, the level of transcription remains high; (ii) termination of viral DNA replication does not terminate late SV40 transcription; (iii) early SV40 RNA is overproduced by tsA 58 at all temperatures, but especially at higher temperatures; and (iv) overproduction of early SV40 RNA appears to be correlated with defectiveness of the tsA mutant T-antigen. These results suggest that T-antigen may regulate its own production either by repressing the synthesis of early viral RNA or by stimulating the synthesis of late SV40 RNA or both.

Journal ArticleDOI
TL;DR: PAA-resistant strains of herpes simplex virus type 1 (HSV-1) complemented the growth of sensitive strains of homologous and heterologous types in mixed infections in the presence of the drug.
Abstract: Phosphonoacetic acid (PAA) inhibited the synthesis of herpes simplex virus DNA in infected cells and the activity of the virus-specific DNA polymerase in vitro. In the presence of concentrations of PAA sufficient to prevent virus growth and virus DNA synthesis, normal amounts of early virus proteins (alpha- and beta-groups) were made, but late virus proteins (gamma-group) were reduced to less than 15% of amounts made in untreated infected cells. This residual PAA-insensitive synthesis of gamma-polypeptides occurred early in the virus growth cycle when rates were identical in PAA-treated and untreated infected cells. Passage of virus in the presence of PAA resulted in selection of mutants resistant to the drug. Stable clones of mutant viruses with a range of drug sensitivities were isolated and the emergence of variants resistant to high concentrations of PAA involved the sequential selection of mutants progressively better adapted to growth in the presence of the drug. Increased drug resistance of virus yield or plaque formation was correlated with increased resistance of virus DNA synthesis, gamma-protein synthesis, and resistance of the virus DNA polymerase reaction in vitro to the inhibitory effects of the drug. PAA-resistant strains of herpes simplex virus type 1 (HSV-1) complemented the growth of sensitive strains of homologous and heterologous types in mixed infections in the presence of the drug. Complementation was markedly dependent upon the proportions of the resistant and sensitive partners participating in the mixed infection. Intratypic (HSV-1A X HSV-1B) recombination of the PAA resistance marker(s), Pr, occurred at high frequency relative to plaque morphology (syn) and bromodeoxyuridine resistance (Br, thymidine kinase-negative phenotype) markers, with the most likely order being syn-Br-Pr. Recombinant viruses were as resistant or sensitive to PAA as the parental viruses, and viruses recombinant for their PAA resistance phenotype were also recombinant for the PAA resistance character of the virus DNA polymerase. The results provide additional evidence that the herpesvirus DNA polymerase is the site of action of PAA and illustrate the potential usefulness of PAA-resistant mutants in genetic studies of herpesviruses.

Journal ArticleDOI
TL;DR: Results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane, and G protein behaved as in cells infected by mutants in N protein.
Abstract: Maturation of viral proteins in cells infected with mutants of vesicular stomatitis virus was studied by surface iodination and cell fractionation The movement of G, M, and N proteins to the virion bud appeared to be interdependent Mutations thought to be in G protein prevented its migration to the cell surface, allowed neither M nor N protein to become membrane bound, and blocked formation of viral particles Mutant G protein appeared not to leave the endoplasmic reticulum at the nonpermissive temperature, but this defect was partially reversible In cells infected with mutants that caused N protein to be degraded rapidly or prevented its assembly into nucleocapsids, M protein did not bind to membranes and G protein matured to the cell surface, but never entered structures with the density of virions Mutations causing M protein to be degraded prevented virion formation, and G protein behaved as in cells infected by mutants in N protein These results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane

Journal ArticleDOI
TL;DR: The genetic basis for the distinctive capacity of influenza A/WSN/33 (H0N1) virus (WSN virus) to produce plaques on bovine kidney (MDBK) cells was found to be related to virus neuraminidase, which is in accord with the hypothesis that neuraminidsase may facilitate production of infectious particles by removing sialic acid residues and exposing appropriate cleavage sites on hemagglutinin.
Abstract: The genetic basis for the distinctive capacity of influenza A/WSN/33 (H0N1) virus (WSN virus) to produce plaques on bovine kidney (MDBK) cells was found to be related to virus neuraminidase. Recombinant viruses that derived only the neuraminidase of WSN virus were capable of producing plaques, whereas recombinant viruses identical to WSN except for neuraminidase did not produce plaques. With viruses that do not contain WSN neuraminidase, infectivity of virus yields from MDBK cells was increased approximately 1,000-fold after in vitro treatment with trypsin. In contrast, no significant increase in infectivity was observed after trypsin treatment of viruses containing WSN neuraminidase. In addition, polyacrylamide gel analysis of proteins of WSN virus obtained after infection of MDBK cells demonstrated that hemagglutinin was present in the cleaved form (HA1 + HA2), whereas only uncleaved hemagglutinin was obtained with a recombinant virus that derived all of its genes from WSN virus except its neuraminidase. These data are in accord with the hypothesis that neuraminidase may facilitate production of infectious particles by removing sialic acid residues and exposing appropriate cleavage sites on hemagglutinin.

Journal ArticleDOI
TL;DR: The electron micrographs are consistent with the hypothesis that the single-stranded ends on the DNA anneal to form a hairpin, that the DNA synthesis is initiated at or near that end and proceeds bidirectionally toform a lariat, and that resulting progeny derived by semiconservative replication are "head-to-head" and "tail-to thetail" dimers.
Abstract: This paper concerns the properties of herpes simplex virus 1 DNA replicating in HEp-2 and human embryonic lung cells. The results were as follows. (i) Only a small fraction of input viral DNA entered the replicative pool. The bulk of the input viral DNA cosedimented with marker viral DNA and did not appear to be degraded or dissociated into L and S components. (ii) Nascent DNA sedimented faster and banded at a higher density than that of mature viral DNA extracted from virions. Pulse-chase experiments indicated that nascent DNA acquires the sedimentation rate and buoyant density of viral DNA within 30 to 40 min after its synthesis. (iii) Electron microscopic studies indicated that the DNA extracted from cells replicating viral DNA and banding at the density of viral DNA contained: (a) linear, full-size molecules with internal gaps and single-stranded regions at termini; (b) molecules with lariats, consisting of a linear segment up to 2× the size of mature DNA and a ring ranging from 0.5 × 106 to 100 × 106 in molecular weight, showing continuous and discontinuous forks; (c) circular, double-stranded molecules, both full-size and multiples of 18 × 106 in molecular weight, but without forks or loops; (d) molecules showing “eye” and “D” loops at or near one end of the DNA; (e) large, tangled masses of DNA, similar to those observed for T4 and pseudorabies virus replicating DNAs, containing loops and continuous and discontinuous forks. The electron micrographs are consistent with the hypothesis that the single-stranded ends on the DNA anneal to form a hairpin, that the DNA synthesis is initiated at or near that end and proceeds bidirectionally to form a lariat, and that resulting progeny derived by semiconservative replication are “head-to-head” and “tail-to-tail” dimers.

Journal ArticleDOI
TL;DR: The A gene is the only viral gene in the early region whose expression is necessary for productive infection of permissive cells, and growing more slowly than wild type without helper virus.
Abstract: Mutants of simian virus 40 (SV40), with deletions ranging in size from fewer than 3 to 750 base pairs located throughout the SV40 genome, were obtained by infecting CV-1P cells with linear SV40 DNA and DNA of an appropriate helper virus. The linear DNA was obtained by complete cleavage of closed circular DNA with Hae II or Bam HI endonuclease or partial cleavage with either Hae III endonuclease or nuclease S1, followed, in some cases, by mild digestion with phage λ 5′ -exonuclease. The following mutants with deletions in the late region of the SV40 genome were obtained and characterized. Ten, containing deletions at the Hae II endonuclease site (map location 0.83), define a new genetic complementation group, E, grow extremely slowly without helper virus, and cause alterations only in VP2. Two mutants with deletions in the region 0.92 to 0.945 affect both VP2 and VP3, demonstrating that VP3 shares sequences with the C-terminal portion of VP2. The mutant with a deletion at 0.93 is the first deletion mutant in the D complementation group and is also temperature sensitive; the mutant with a deletion at 0.94 is viable and grows normally. Three mutants with deletions at the EcoRI endonuclease site (0/1.0) and eleven with deletions at the BamHI endonuclease site (0.15) fall into the B/C complementation group. Six additional mutants with deletions at the BamHI endonuclease site are viable, growing more slowly than wild type. VP1 is the only polypeptide affected by mutants in the B/C group. A mutant with a deletion of the region 0.72 to 0.80 has a polar effect, failing to express the E, D, and B/C genes. Mutants with deletions in the early region (0.67 counterclockwise to 0.17) at 0.66 to 0.59, 0.48, 0.47, 0.33, and 0.285 to 0.205 are all members of the A complementation group. Thus, the A gene is the only viral gene in the early region whose expression is necessary for productive infection of permissive cells. Since mutants with deletions in the region 0.59 to 0.54 are viable, two separate regions are essential for expression of the gene A function: 0.66 to 0.59 and 0.54 to 0.21. Mutants with deletions at 0.21 and 0.18 are viable. Approximate map locations of SV40 genes and possible models for their regulation are discussed.

Journal ArticleDOI
TL;DR: Viruses above about 60 nm in diameter may be rapidly sized to a few nanometers in their natural hydrated state as they pass one by one through a single pore in a newly developed nanometer-particle analyzer based on the resistive-pulse technique of the Coulter Counter and the use of submicron diameter pores made by the Nuclepore process.
Abstract: Viruses above about 60 nm in diameter may be rapidly sized to a few nanometers in their natural hydrated state as they pass one by one through a single pore in a newly developed nanometer-particle analyzer based on the resistive-pulse technique of the Coulter Counter and the use of submicron diameter pores made by the Nuclepore process. Size measurements for several type C oncornaviruses are: Rauscher murine leukemia, 122.3 +/- 2 nm; simian sarcoma, 109.7 +/- 3 nm; Mason-Pfizer monkey, 140.0 +/- 2.5 nm; RD-114, 115 +/- 5 nm; and feline leukemia, 127.4 +/- 2 nm, relative to standard 109-nm latex spheres. The T2 bacteriophage has a volume of (5.10 +/- 0.15) X 10(-16) cm3. Concentrations of viruses near 10(9) to 10(11)/ml that are fairly clear of debris are routinely measurable in a few minutes to an accuracy near 15%. A lower practical count limit is near 5 X 10(7) viruses per ml.

Journal ArticleDOI
TL;DR: Analysis of polyoma virions by X-ray fluorometry demonstrated that calcium (Ca2+) was associated with the purified virion, and Cesium chloride density gradient centrifugation indicated that both EGTA and dithiothreitol were necessary for dissociation to occur; neither reagent alone dissociated the virus.
Abstract: Analysis of polyoma virions by X-ray fluorometry demonstrated that calcium (Ca2+) was associated with the purified virion. Treatment of purified virions with ethyleneglycol-bis-N,N'-tetraacetic acid (EGTA), which chelates Ca2+, and the reducing agent dithiothreitol caused the virions to dissociate. Electron microscopy revealed that the virions were dissociated to the capsomere level. Incubation of polyoma virions with 150 mM NaCl, 10 mM EGTA, and 3 mM dithiothreitol was optimum for the dissociation reaction. The pH for the dissociation reaction ranged from 7.5 to 10.5. Cesium chloride density gradient centrifugation indicated that both EGTA and dithiothreitol were necessary for dissociation to occur; neither reagent alone dissociated the virus. The major protein product of the dissociated viral particles sedimented at 12S. Relationships between these experiments and the alkaline carbonate-bicarbonate dissociation of polyoma are discussed.

Journal ArticleDOI
TL;DR: Thymidine kinase (TK) activity in WI-38 and MRC-5 human fibroblasts was analyzed after subculture or human cytomegalovirus (HCMV) infection and showed the HCMV-stimulated TKs to be of cellular origin.
Abstract: Thymidine kinase (TK) activity in WI-38 and MRC-5 human fibroblasts was analyzed by discontinuous polyacrylamide gel electrophoresis (disc-PAGE) and discontinuous glycerol gradient electrophoresis (disc-GEP) after subculture or human cytomegalovirus (HCMV) infection. Two peaks of TK activity with different relative fraction-of-migration (Rf) values were resolved by disc-PAGE or disc-GEP in extracts from log-phase and infected cells. Growing WI-38 cells expressed a slowly migrating (Rf = 0.14 PAGE, Rf = 0.4 GEP) peak of TK activity, which was partially inhibited by 1.0 mM dCTP, but which retained little activity at pH 4.5. Growing MRC cells also displayed a slowly migrating peak (Rf = 0.10 PAGE) with similar properties. Both cell types expressed a faster-migrating TK activity (Rf = 0.45 PAGE, Rf = 0.7 GEP) in the growing and resting state that was strongly inhibited by 1 mM dCTP but retained 50% activity at pH 4.5. When either cell type was infected with HCMV, there was a rapid and high-level stimulation of the slowly migrating form of TK and a slight stimulation of the faster-migrating form. Two strains of HCMV (AD169 and Town) failed to produce an electrophoretically distinct virus TK in either cell type after infection. TK enzymes were partially purified by disc-GEP from extracts of log-phase WI-38 or AD169-infected WI-38 cells. Characterization of these enzymes with respect to phosphate donor specificity, pH optima, thermostability, and salt inhibition showed the HCMV-stimulated TKs to be of cellular origin.

Journal ArticleDOI
TL;DR: Cell lines infected by two different strains of SV40 synthesize immunoreactive proteins that differ slightly in mobility during SDS-polyacrylamide gel electrophoresis, evidence that the protein is coded for by the virus.
Abstract: A large simian virus 40 (SV40)-specific protein can be efficiently immunoprecipitated from infected cell extracts with antisera obtained from hamsters bearing SV40-induced tumors. The protein has an apparent molecular weight of 88,000 to 100,000 with respect to markers with known molecular weights, but behaves anomalously on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Cell lines infected by two different strains of SV40 synthesize immunoreactive proteins that differ slightly in mobility during SDS-polyacrylamide gel electrophoresis, evidence that the protein is coded for by the virus. These differences in protein size correlate with differences in the electrophoretic mobility of viral DNA fragments obtained by digestion with HindII and III restriction enzymes. The size of the viral capsid proteins VP2 and VP3 also varies with the strain of virus. dl-1001, a constructed deletion mutant that lacks part of the SV40A gene, directs the synthesis of a 33,000-dalton polypeptide that is not detected in cells infected with wild-type virus. The deletion fragment, like the larger protein, is phosphorylated. Maps of tryptic peptides from the 88,000- to 100,000-dalton protein and the 33,000-dalton fragment show common peptides and provide strong direct evidence that the proteins are products of the SV40 A gene. The deletion fragment reacts with antitumor sera and binds to double-stranded DNA in the presence of the complete A protein.

Journal ArticleDOI
TL;DR: Four low-molecular-weight polypeptides migrating like H2a, H2b, H3, and H4 calf liver histones were detected by sodium dodecyl sulfate-acrylamide gel electrophoresis of highly purified preparations of bovine papillomavirus (BPV) and human papillomatic virus (HPV).
Abstract: Four low-molecular-weight polypeptides migrating like H2a, H2b, H3, and H4 calf liver histones were detected by sodium dodecyl sulfate-acrylamide gel electrophoresis of highly purified preparations of bovine papillomavirus (BPV) and human papillomavirus (HPV). Complexes of these polypeptides and viral DNA were isolated by agarose-gel filtration of the alkaline disruption products of both viruses. When observed under the electron microscope, these complexes appeared as circular structures composed of nucleosomes with a diameter of about 8.0 nm interconnected by a naked DNA filament. The maximal frequency of nucleosomes per molecule was 30 for both viruses, corresponding to a condensation ratio of the viral DNA of 2.5.

Journal ArticleDOI
TL;DR: The Friend strain of SFFV appears to be a recombinant between a portion of the F-MuLV genome and RNA sequences that are highly related to murine xenotropic viruses.
Abstract: The genome of the Friend strain of the spleen focus-forming virus (SFFV) has been analyzed by molecular hybridization. SFFV is composed of genetic sequences homologous to Friend type C helper virus (F-MuLV) and SFFV-specific sequences not present in F-MuLV. These SFFV-specific sequences are present in both the Friend and Rauscher strains of murine erythroleukemia virus. The SFFV-specific sequences are partially homologous to three separate strains of mouse xenotropic virus but not to several cloned mouse ecotropic viruses. Thus, the Friend strain of SFFV appears to be a recombinant between a portion of the F-MuLV genome and RNA sequences that are highly related to murine xenotropic viruses. The implications of the acquisition of the xenotropic virus-related sequences are discussed in relation to the leukemogenicity of SFFV, and a model for the pathogenicity of other murine leukemia-inducing viruses is proposed.

Journal ArticleDOI
TL;DR: The small RNAs of the Moloney murine leukemia virus (M-MuLV) were fractionated into at least 15 species by two-dimensional polyacrylamide gel electrophoresis as mentioned in this paper.
Abstract: The small RNAs of Moloney murine leukemia virus (M-MuLV) were fractionated into at least 15 species by two-dimensional polyacrylamide gel electrophoresis. The pattern of small RNAs is significantly different from that of Rous sarcoma virus. A subset of the virion small RNAs is associated with the genome RNA in the 70S complex. One of the associated molecules, a cellular tRNA, is tightly bound to the genome RNA and serves as the major primer for M-MuLV RNA-directed DNA synthesis in vitro.

Journal ArticleDOI
TL;DR: Two cell-associated forms of the glycoprotein (G) of vesicular stomatitis virus, termed G1 and G2, have been resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that partial clycosylation of G occurs concomitantly with or immediately after its synthesis.
Abstract: Two cell-associated forms of the glycoprotein (G) of vesicular stomatitis virus, termed G_1 and G_2, have been resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. G_1 has the higher electrophoretic mobility, but both forms migrate more slowly than G protein synthesized in a wheat germ cell-free system (G_0), which presumably is the unglycosylated form. G_1 is a kinetic precursor of the G_2 form, and the apparent cause of the electrophoretic difference between the two species is the presence of N-acetylneuraminic acid on the G_2 form. Conversion of G_1 to G_2 occurs 10 to 20 min prior to the appearance of the G_2 form of the protein on the cell surface. This suggests that the G protein may be completely glycosylated several minutes prior to its migration to the cell surface and that glycosylation is not the limiting step in its maturation. No glycoprotein comigrating with G_0 can be detected in the infected cells, even after 5-min labeling periods; this suggests that partial clycosylation of G occurs concomitantly with or immediately after its synthesis.

Journal ArticleDOI
TL;DR: Analysis of the circular DNA of hepatitis B Dane particles suggests that the circular molecules in Dane particles have single-stranded regions of varying lengths that are made double stranded during the DNA polymerase reaction.
Abstract: The circular DNA of hepatitis B Dane particles, which serves as the primer/template for an endogenous DNA polymerase, was analyzed by electrophoresis before and after a polymerase reaction and after digestion by restriction endonuclease or single-strand-specific endonuclease S1. The unreacted molecules extracted from the particles were electrophoretically heterogeneous, and treatment with S1 nuclease produced double-stranded linear DNA ranging in length from 1,700 to 2,800 base pairs (bp). After an endogenous DNA polymerase reaction, two discrete species of DNA molecules were found: a circular form and a linear form 3,200 bp long. The reaction resulted in a population of molecules with an elongated and more homogeneous double-stranded region. These results suggest that the circular molecules in Dane particles have single-stranded regions of varying lengths that are made double stranded during the DNA polymerase reaction. The endogenous DNA polymerase was found to initiate apparently at random in a region spanning more than a third of the molecule. Analysis of restriction endonuclease cleavage fragments of the fully elongated DNA revealed that although the molecules were of a uniform length, they were somewhat heterogeneous in sequence. The sum of the sizes of the 10 major endonuclease Hae III-generated fragments, detected by ethidium bromide, was 3,880 bp. Two additional fragments (B and G) detected by autoradiography after an endogenous DNA polymerase reaction with (32)P-labeled deoxynucleoside triphosphates made the total 4,910 bp.

Journal ArticleDOI
TL;DR: The influenza virion transcriptase is capable of synthesizing in vitro complementary RNA (cRNA) that is similar in several characteristics to the cRNA synthesized in the infected cell, which is the viral mRNA.
Abstract: The influenza virion transcriptase is capable of synthesizing in vitro complementary RNA (cRNA) that is similar in several characteristics to the cRNA synthesized in the infected cell, which is the viral mRNA. Most of the in vitro cRNA is large (approximately 2.5 X 10(5) to 10(6) daltons), similar in size to in vivo cRNA. The in vitro transcripts initiate in adenosine (A) or guanosine (G) at the 5' end, as also appears to be the case with in vivo cRNA (R.M. Krug et al., 1976). The in vitro transcripts contain covalently linked polyadenylate [poly(A)] sequences, which are longer and more heterogeneous than the poly(A) sequences found on in vivo cRNA. The synthesis in vitro of cRNA with these characteristics requires both the proper divalent cation, Mg2+, and a specific dinulceside monophosphage (DNMP), ApG or GpG. These DNMPs stimulate cRNA synthesis about 100-fold in the presence of Mg2+ and act as primers to initiate RNA chains, as demonstrated by the fact that the 5'-phosphorylated derivatives of these DNMP's, 32pApG or 32pGpG, are incroporated at the 5' end of the product RNA. The RNA synthesized in vitro differs from in vivo cRNA in that neither capping nor methylation of the in vitro transcripts has been detected. The virion does contain a methylase activity, as shown by its ability to methylate exogenous methyl-deficient Escherichia coli tRNA.

Journal ArticleDOI
TL;DR: The data suggest that the glycoprotein spike of VS virus is composed of more than one G protein, consistent with the hypothesis that the matrix (M) protein may serve as a bridge between the G and N proteins in assembly of the VS virion.
Abstract: To delineate the proximity and spatial arrangement of the major structural proteins of intact vesicular stomatitis (VS) virions, protein complexes formed by oxidation or by bivalent cross-linkers were analyzed by two-dimensional electrophoresis on polyacrylamide slab gels. H2O2 oxidation of VS virions produced an N-polypeptide dimer (molecular weight, approximately equal to 110,000) on a first dimension gel that could be reduced to N monomers (molecular weight, approximately equal to 50,000). Proteins extracted from unreduced and unoxidized VS virions contained dimeric and trimeric forms of M-protein complexes as well as a heterodimer of M and N protein. Qualitatively similar VS viral protein complexes were generated by exposing VS virions to the reversible protein cross-linkers methyl-4-mercaptobutyrimidate (MMB), tartryl diazide (TDA), and dithiobis(succinimidyl proprionate) (DTBSP); cross-linked complexes on first-dimension gels were cleaved by reduction with 2-mercaptoethanol (MMB or DTBSP cross-linked) or by periodate oxidation (TDA cross-linked). In addition to covalently linked homodiamers of M and N proteins and a protein M-N heterodimer, the protein cross-linkers also generated homo-oligomers of G protein and a G-M heterodimer. These data suggest that the glycoprotein spike of VS virus is composed of more than one G protein. The existence of N-M and G-M heterodimers is consistent with the hypothesis that the matrix (M) protein may serve as a bridge between the G and N proteins in assembly of the VS virion.