scispace - formally typeset
Search or ask a question
JournalISSN: 2662-4966

Microplastics and Nanoplastics 

SpringerOpen
About: Microplastics and Nanoplastics is an academic journal published by SpringerOpen. The journal publishes majorly in the area(s): Microplastics & Biology. It has an ISSN identifier of 2662-4966. It is also open access. Over the lifetime, 59 publications have been published receiving 658 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a total of 8218 pelagic microplastic samples from the world’s oceans were synthesized to create a dataset composed of raw, calibrated, processed, and gridded data which are made available to the public.
Abstract: A total of 8218 pelagic microplastic samples from the world’s oceans were synthesized to create a dataset composed of raw, calibrated, processed, and gridded data which are made available to the public. The raw microplastic abundance data were obtained by different research projects using surface net tows or continuous seawater intake. Fibrous microplastics were removed from the calibrated dataset. Microplastic abundance which fluctuates due to vertical mixing under different oceanic conditions was standardized. An optimum interpolation method was used to create the gridded data; in total, there were 24.4 trillion pieces (8.2 × 104 ~ 57.8 × 104 tons) of microplastics in the world’s upper oceans.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss how trends in the amounts of litter in the marine environment can be compared with the information provided by models, and they find that increasing amounts of plastic are found in some regions, especially in remote areas.
Abstract: Whilst both plastic production and inputs at sea have increased since the 1950s, several modelling studies predict a further increase in the coming years in these respective quantities. We compiled scientific literature on trends in marine litter, consisting largely of plastic and microplastics in the ocean, understanding that monitoring programs or assessments for these aspects are varied, frequently focusing on limited components of the marine environment in different locations, and covering a wide spectrum of marine litter types, with limited standardization. Here we discuss how trends in the amounts of litter in the marine environment can be compared with the information provided by models. Increasing amounts of plastic are found in some regions, especially in remote areas, but many repeated surveys and monitoring efforts have failed to demonstrate any consistent real temporal trend. An observed steady state situation of plastic quantities in many marine compartments and the fate and transport of plastic in the marine environment remain areas for much needed further research.

53 citations

Journal ArticleDOI
TL;DR: In this article, a meta-analysis on published literature and a lab experiment focusing on microplastic shapes-and polymer-induced effects on soil aggregation and organic matter decomposition was conducted.
Abstract: Microplastics are a diverse and ubiquitous contaminant, a global change driver with potential to alter ecosystem properties and processes. Microplastic-induced effects in soils are manifold as microplastics differ in a variety of properties among which the shape is of special interest. Our knowledge is limited regarding the impact of various microplastic shapes on soil processes. Therefore, we conducted this two-part research comprising a meta-analysis on published literature and a lab experiment focusing on microplastic shapes- and polymer-induced effects on soil aggregation and organic matter decomposition. We here focus on fibers, films, foams and particles as microplastic shapes. In the meta-analysis, we found a strong research focus on fibrous and particulate microplastic materials, with films and foams neglected. Our experiment showed that microplastic shapes are important modulators of responses in soil aggregation and organic matter decomposition. Fibers, irrespective of their chemistry, negatively affected the formation of aggregates. However, for other shapes like foams and particles, the polymer identity is an important factor co-modulating the soil responses. Further research is needed to generate a data-driven foundation to permit a better mechanistic understanding of the importance and consequences of microplastics added to soils.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identified a suite of criteria used to screen studies reporting microplastic particles (MPs) in air for the purposes of evaluating their usefulness in assessing human exposure.
Abstract: Over the last several years there has been an increase in studies reporting the presence of microplastic particles (MPs) in both indoor and outdoor air. Data reported reflect a variety of different types of air samples, which have helped to demonstrate the ubiquity of MPs in the atmosphere and their potential contribution to atmospheric particulate matter (PM). The relative quality of the data reporting on MPs in air has not been evaluated, but represents an important step towards improving our overall understanding of the human health implications in relation to inhalation exposure to MPs. Adopting recent approaches that have been proposed to assess the quality of data for those studies reporting concentrations in biota and water samples, we identify a suite of criteria used to screen studies reporting MPs in air for the purposes of evaluating their usefulness in assessing human exposure. Here we review and summarize data from 27 studies reporting MPs in various types of air samples and evaluate each of the studies against 11 separate criteria representing four main categories (sampling; contamination mitigation; sample purification / handling; characterization and application towards assessing human exposure). On average, studies scored 48.6% (range 18.2–81.8%) of the maximum score. Only one study received a positive score for all criteria, implying that there remains a need for future studies to consider strengthening implementation and reporting of QA/QC protocol. The most urgent areas requiring attention relate to the need for studies to avoid and verify background contamination and to strengthen the quantification of method recovery efficiencies. The majority of studies report data for particulates > 10 μm. Due to the associations between exposure to particles < 10 μm and human health effects, we recommend that prioritization efforts that develop standard protocols, based on existing air sampling methods capable of characterizing MPs < 10 μm are progressed.

31 citations

Journal ArticleDOI
TL;DR: In this article , a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions.
Abstract: Abstract Microplastic particles (MPs) are ubiquitous across a wide range of aquatic habitats but determining an appropriate level of risk management is hindered by a poor understanding of environmental risk. Here, we introduce a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions. The four thresholds were derived using a species sensitivity distribution (SSD) approach and the best available data from the peer-reviewed literature. This included a total of 290 data points extracted from 21 peer-reviewed microplastic toxicity studies meeting a minimal set of pre-defined quality criteria. The meta-analysis resulted in the development of critical thresholds for two effects mechanisms: food dilution with thresholds ranging from ~ 0.5 to 35 particles/L, and tissue translocation with thresholds ranging from ~ 60 to 4100 particles/L. This project was completed within an expert working group, which assigned high confidence to the management framework and associated analytical approach for developing thresholds, and very low to high confidence in the numerical thresholds. Consequently, several research recommendations are presented, which would strengthen confidence in quantifying threshold values for use in risk assessment and management. These recommendations include a need for high quality toxicity tests, and for an improved understanding of the mechanisms of action to better establish links to ecologically relevant adverse effects.

30 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202315
202229
202117