scispace - formally typeset
Search or ask a question
JournalISSN: 2624-6120

Signals 

Multidisciplinary Digital Publishing Institute
About: Signals is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Computer science & Engineering. It has an ISSN identifier of 2624-6120. It is also open access. Over the lifetime, 76 publications have been published receiving 139 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
06 Jan 2022-Signals
TL;DR: A wearable device that utilizes real-time monitoring to detect body temperature and ambient conditions and a 1D Convolutional Neural Network was employed to classify whether the user is feverish while considering the physical activity status, illustrated the manner in which it can be leveraged to acquire insight regarding the health of the users in the setting of the COVID-19 pandemic.
Abstract: In late 2019, a new genre of coronavirus (COVID-19) was first identified in humans in Wuhan, China. In addition to this, COVID-19 spreads through droplets, so quarantine is necessary to halt the spread and to recover physically. This modern urgency creates a critical challenge for the latest technologies to detect and monitor potential patients of this new disease. In this vein, the Internet of Things (IoT) contributes to solving such problems. This paper proposed a wearable device that utilizes real-time monitoring to detect body temperature and ambient conditions. Moreover, the system automatically alerts the concerned person using this device. The alert is transmitted when the body exceeds the allowed temperature threshold. To achieve this, we developed an algorithm that detects physical exercise named “Continuous Displacement Algorithm” based on an accelerometer to see whether a potential temperature rise can be attributed to physical activity. The people responsible for the person in quarantine can then connect via nRF Connect or a similar central application to acquire an accurate picture of the person’s condition. This experiment included an Arduino Nano BLE 33 Sense which contains several other sensors like a 9-axis IMU, several types of temperature, and ambient and other sensors equipped. This device successfully managed to measure wrist temperature at all states, ranging from 32 °C initially to 39 °C, providing better battery autonomy than other similar devices, lasting over 12 h, with fast charging capabilities (500 mA), and utilizing the BLE 5.0 protocol for data wireless data transmission and low power consumption. Furthermore, a 1D Convolutional Neural Network (CNN) was employed to classify whether the user is feverish while considering the physical activity status. The results obtained from the 1D CNN illustrated the manner in which it can be leveraged to acquire insight regarding the health of the users in the setting of the COVID-19 pandemic.

14 citations

Journal ArticleDOI
02 May 2022-Signals
TL;DR: A multi-model deep learning approach to fuse the features of both point clouds and range–Doppler for classifying six activities, i.e., boxing, jumping, squatting, walking, circling, and high-knee lifting, based on a millimeter-wave radar is proposed.
Abstract: Millimeter-wave radar has demonstrated its high efficiency in complex environments in recent years, which outperforms LiDAR and computer vision in human activity recognition in the presence of smoke, fog, and dust. In previous studies, researchers mostly analyzed either 2D (3D) point cloud or range–Doppler information from radar echo to extract activity features. In this paper, we propose a multi-model deep learning approach to fuse the features of both point clouds and range–Doppler for classifying six activities, i.e., boxing, jumping, squatting, walking, circling, and high-knee lifting, based on a millimeter-wave radar. We adopt a CNN–LSTM model to extract the time-serial features from point clouds and a CNN model to obtain the features from range–Doppler. Then we fuse the two features and input the fused feature into the full connected layer for classification. We built a dataset based on a 3D millimeter-wave radar from 17 volunteers. The evaluation result based on the dataset shows that this method has higher accuracy than utilizing the two kinds of information separately and achieves a recognition accuracy of 97.26%, which is about 1% higher than other networks with only one kind of data as input.

10 citations

Journal ArticleDOI
17 Aug 2022-Signals
TL;DR: In this article , all the reported wavelet denoising techniques for EEG signals are surveyed in terms of the quality of noise removal and retrieving important information, and evaluated based on the results shown in the respective literature.
Abstract: Electroencephalogram (EEG) artifacts such as eyeblink, eye movement, and muscle movements widely contaminate the EEG signals. Those unwanted artifacts corrupt the information contained in the EEG signals and degrade the performance of qualitative analysis of clinical applications and as well as EEG-based brain–computer interfaces (BCIs). The applications of wavelet transform in denoising EEG signals are increasing day by day due to its capability of handling non-stationary signals. All the reported wavelet denoising techniques for EEG signals are surveyed in this paper in terms of the quality of noise removal and retrieving important information. In order to evaluate the performance of wavelet denoising techniques for EEG signals and to express the quality of reconstruction, the techniques were evaluated based on the results shown in the respective literature. We also compare certain features in the evaluation of the wavelet denoising techniques, such as the requirement of reference channel, automation, online, and performance on a single channel.

9 citations

Journal ArticleDOI
15 Apr 2022-Signals
TL;DR: CO values from environmental sensors that were installed in the broader area of the port of Igoumenitsa in Greece are obtained using a machine-learning algorithm, namely the univariate long short-term memory (LSTM) algorithm, to provide the predicted outcome of the time series from the port that has been collected.
Abstract: Air pollution is a major problem in the everyday life of citizens, especially air pollution in the transport domain. Ships play a significant role in coastal air pollution, in conjunction with transport mobility in the broader area of ports. As such, ports should be monitored in order to assess air pollution levels and act accordingly. In this paper, we obtain CO values from environmental sensors that were installed in the broader area of the port of Igoumenitsa in Greece. Initially, we analysed the CO values and we have identified some extreme values in the dataset that showed a potential event. Thereafter, we separated the dataset into 6-h intervals and showed that we have an extremely high rise in certain hours. We transformed the dataset to a moving average dataset, with the objective being the reduction of the extremely high values. We utilised a machine-learning algorithm, namely the univariate long short-term memory (LSTM) algorithm to provide the predicted outcome of the time series from the port that has been collected. We performed experiments by using 100, 1000, and 7000 batches of data. We provided results on the model loss and the root-mean-square error as well as the mean absolute error. We showed that with the case with batch number equals to 7000, the LSTM we achieved a good prediction outcome. The proposed method was compared with the ARIMA model and the comparison results prove the merit of the approach.

8 citations

Journal ArticleDOI
02 Mar 2022-Signals
TL;DR: A novel comprehensive framework of smart clothing systems for health monitoring is proposed and highlights the key challenges in popularizing smart clothing and opportunities of future development in diverse application areas such as healthcare, sports and athletics and fashion.
Abstract: Wearable technologies are making a significant impact on people’s way of living thanks to the advancements in mobile communication, internet of things (IoT), big data and artificial intelligence. Conventional wearable technologies present many challenges for the continuous monitoring of human health conditions due to their lack of flexibility and bulkiness in size. Recent development in e-textiles and the smart integration of miniature electronic devices into textiles have led to the emergence of smart clothing systems for remote health monitoring. A novel comprehensive framework of smart clothing systems for health monitoring is proposed in this paper. This framework provides design specifications, suitable sensors and textile materials for smart clothing (e.g., leggings) development. In addition, the proposed framework identifies techniques for empowering the seamless integration of sensors into textiles and suggests a development strategy for health diagnosis and prognosis through data collection, data processing and decision making. The conceptual technical specification of smart clothing is also formulated and presented. The detailed development of this framework is presented in this paper with selected examples. The key challenges in popularizing smart clothing and opportunities of future development in diverse application areas such as healthcare, sports and athletics and fashion are discussed.

8 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202327
202256