scispace - formally typeset
Search or ask a question

Showing papers in "Tissue Engineering Part A in 2022"


Journal ArticleDOI
TL;DR: In this article , a retrievable 3D printed polycaprolactone (PCL) scaffold was used to implant allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device.
Abstract: Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.

13 citations


Journal ArticleDOI
TL;DR: In this article , a metformin-incorporated nano-gelatin/hydroxyapatite fibers (NGF) was produced by electrospinning, cross-linked, and then characterized by X-ray powder diffractometer and Fourier transform infrared spectroscopy.
Abstract: Tissue engineering and regenerative medicine has gradually evolved as a promising therapeutic strategy to the modern health care of aging and diseased population. In this study, we developed a novel nanofibrous scaffold and verified its application in the critical bone defect regeneration. The metformin-incorporated nano-gelatin/hydroxyapatite fibers (NGF) was produced by electrospinning, cross-linked, and then characterized by X-ray powder diffractometer and Fourier-transform infrared spectroscopy. Cytotoxicity, cell adhesion, cell differentiation, and quantitative osteogenic gene and protein expression were analyzed by bone marrow stem cells (BMSCs) from rat. Rat forearm critical bone defect model was performed for the in vivo study. The NGF were characterized by their porous structures with proper interconnectivity without significant cytotoxic effects; the adhesion of BMSCs on the NGF could be enhanced. The osteogenic gene and protein expression were upregulated. Postimplantation, the new regenerated bone in bone defect was well demonstrated in the NGF samples. We demonstrated that the metformin-incorporated NGF greatly improved healing potential on the critical-size bone defect. Although metformin-incorporated NGF had advantageous effectiveness during bone regeneration, further validation is required before it can be applied to clinical applications. Impact statement Bone is the structure that supports the rest of the human body. Critical-size bone defect hinders the regeneration of damaged bone tissues and compromises the mechanical strength of the skeletal system. Characterized by their porous structures with proper interconnectivity, the electrospinning nano-gelatin/hydroxyapatite fibrous scaffold developed in this study can greatly improve the healing potential on the critical-size bone defect. Further validation can validate its potential clinical applications.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating articular cartilage (AC) tissue suffering from OA and degenerative (intervertebral) disc disease (DDD) are summarized focusing on cell-free approaches.
Abstract: Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified. Impact statement Joints affected by osteoarthritis (OA) and degenerative (intervertebral) disc disease (DDD) share similarities in tissue composition and in the degenerative disease processes. This has led to the development of similar tissue engineering approaches to repair the articular cartilage (AC) and the nucleus pulposus (NP), in the context of OA and DDD, such as injectable hydrogels. In this review, recent developments in injectable hydrogels for repair of AC and NP tissues are summarized, biomaterial strategies are compared, and synergies are identified focusing on cell-free approaches. The summarized developments are expected to inspire more cross talk between both research fields.

8 citations


Journal ArticleDOI
TL;DR: A detailed overview of the role of surface engineering for dental implants and their components to optimize tissue responses at different regions along the artificial dental root is provided in this paper , where surface properties steering immunomodulatory processes, facilitating osseointegration, and rendering antibacterial efficacy (at both artificial root and abutment region) are described.
Abstract: Dental implants represent an illustrative example of successful medical devices used in increasing numbers to aid (partly) edentulous patients. Particularly in spite of the percutaneous nature of dental implant systems, their clinical success is remarkable. This clinical success is at least partly related to the effective surface treatment of the artificial dental root, providing appropriate physicochemical properties to achieve osseointegration. The demographic changes in the world, however, with a rapidly increasing life expectancy and an increase in patients suffering from comorbidities that affect wound healing and bone metabolism, make that the performance of dental implants requires continuous improvement. An additional factor endangering the clinical success of dental implants is peri-implantitis, which affects both the soft and hard tissue interactions with dental implants. In this study, we shed light on the optimization of dental implant surfaces through surface engineering. Depending on the region along the artificial dental root, different properties of the surface are required to optimize prevailing tissue response to facilitate osseointegration, improve soft tissue attachment, and exert antibacterial efficacy. As such, surface engineering represents an important tool for assuring the continued future success of dental implants. Impact Statement Dental implants represent a common treatment modality nowadays for the replacement of lost teeth or fixation of prosthetic devices. This review provides a detailed overview of the role of surface engineering for dental implants and their components to optimize tissue responses at the different regions along the artificial dental root. The surface properties steering immunomodulatory processes, facilitating osseointegration, and rendering antibacterial efficacy (at both artificial root and abutment region) are described. The review finally concludes that surface engineering provides a tool to warrant that dental implants will remain future proof in more challenging applications, including an aging patient population and comorbidities that affect bone metabolism and wound healing.

7 citations


Journal ArticleDOI
TL;DR: In this article , a dual delivery of low-dose BMP2 and IGF1 in MPs through alginate/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation.
Abstract: Critical-sized cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study, we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-sized cranial bone defect healing. The gelatin MPs loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult Sprague Dawley rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel containing MPs loaded with BMP2 (2 μg), IGF1 (2 μg), or a combination of BMP2 (1 μg) and IGF1 (1 μg) were injected to the defect site. New bone formation was evaluated by microcomputed tomography, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical-sized bone defect, with advantage in reducing the dose of BMP2. Impact Statement Sequential release of bone morphogenetic protein 2 (BMP2) followed by insulin-like growth factor 1 (IGF1) in two different microparticles promotes critical-sized bone defect healing. This dual delivery system reduces the dose of BMP2 by supplementing IGF1, which may diminish the potential side effects of BMP2.

7 citations


Journal ArticleDOI
TL;DR: It is suggested that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical size bone defect, with advantage in reducing the dose of B MP2.
Abstract: Critical size cranial bone defect remains a great clinical challenge. With advantages in regenerative medicine, injectable hydrogels incorporated with bioactive molecules show great potential in promoting cranial bone repair. Recently, we developed a dual delivery system by sequential release of BMP2 followed by IGF1 in microparticles (MPs), and an injectable alginate/collagen (alg/col)-based hydrogel. In this study we aim to evaluate the effect of dual delivery of BMP2 and IGF1 in MPs through the injectable hydrogel in critical-size cranial bone defect healing. The gelatin MPs (gMPs) loaded with BMP2 and poly(lactic-co-glycolic acid)-poly(ethylene glycol)-carboxyl (PLGA-PEG-COOH) MPs (pMPs) loaded with IGF1 were prepared, respectively. The encapsulation efficiency and release profile of growth factors in MPs were measured. A cranial defect model was applied to evaluate the efficacy of the dual delivery system in bone regeneration. Adult SD rats were subjected to osteotomy to make an ⌀8-mm cranial defect. The injectable hydrogel contained MPs loading with BMP2 (2 µg), IGF1 (2 µg), or a combination of BMP2 (1 µg) and IGF1 (1 µg) were injected to the defect site. New bone formation was evaluated by micro-CT, histological analysis, and immunohistochemistry after 4 or 8 weeks. Data showed that dual delivery of the low-dose BMP2 and IGF1 in MPs through alg/col-based hydrogel successfully restored cranial bone as early as 4 weeks after implantation, whose effect was comparable to the single delivery of high-dose BMP2 in MPs. In conclusion, this study suggests that dual delivery of BMP2 and IGF1 in MPs in alg/col-based hydrogel achieves early bone regeneration in critical size bone defect, with advantage in reducing the dose of BMP2.

7 citations


Journal ArticleDOI
TL;DR: Light is shed on the optimization of dental implant surfaces via surface engineering, which represents an important tool for assuring the continued future success of dental implants.
Abstract: Dental implants represent an illustrative example of successful medical devices used in increasing numbers to aid (partly) edentulous patients. Particularly in spite of the percutaneous nature of dental implant systems, their clinical success is remarkable. This clinical success is at least partly related to the effective surface treatment of the artificial dental root, providing appropriate physico-chemical properties to achieve osseointegration. The demographic changes in the world, however, with a rapidly increasing life-expectancy and an increase in patients suffering from co-morbidities that affect wound healing and bone metabolism, make that the performance of dental implants requires continuous improvement. An additional factor endangering the clinical success of dental implants is peri-implantitis, which affects both the soft and hard tissue interactions with dental implants. Here, we shed light on the optimization of dental implant surfaces via surface engineering. Depending on the region along the artificial dental root, different properties of the surface are required to optimize prevailing tissue response to facilitate osseointegration, improve soft tissue attachment, and exert antibacterial efficacy. As such, surface engineering represents an important tool for assuring the continued future success of dental implants.

7 citations


Journal ArticleDOI
TL;DR: In this paper , a mechanically tunable hyaluronic acid (HA) hydrogel system was developed to investigate the influence of hydrogels stiffness on VML repair, and the results showed that an intermediate stiffness (3 kPa) more compliant than adult muscle tissue facilitated improved and sustained regenerative outcomes up to 24 weeks postinjury in a rat latissimus dorsi model of VML.
Abstract: Volumetric muscle loss (VML) injuries are characterized by permanent loss of muscle mass, structure, and function. Hydrogel biomaterials provide an attractive platform for skeletal muscle tissue engineering due to the ability to easily modulate their biophysical and biochemical properties to match a range of tissue characteristics. In this work, we successfully developed a mechanically tunable hyaluronic acid (HA) hydrogel system to investigate the influence of hydrogel stiffness on VML repair. HA was functionalized with photoreactive norbornene groups to create hydrogel networks that rapidly crosslink through thiol-ene click chemistry with tailored mechanics. Mechanical properties were controlled by modulating the amount of matrix metalloproteinase-degradable peptide crosslinker to produce hydrogels with increasing elastic moduli of 1.1 ± 0.002, 3.0 ± 0.002, and 10.6 ± 0.006 kPa, mimicking a relevant range of developing and mature muscle stiffnesses. Functional muscle recovery was assessed following implantation of the HA hydrogels by in situ photopolymerization into rat latissimus dorsi (LD) VML defects at 12 and 24 weeks postinjury. After 12 weeks, muscles treated with medium stiffness (3.0 kPa) hydrogels produced maximum isometric forces most similar to contralateral healthy LD muscles. This trend persisted at 24 weeks postinjury, suggestive of sustained functional recovery. Histological analysis revealed a significantly larger zone of regeneration with more de novo muscle fibers following implantation of medium stiffness hydrogels in VML-injured muscles compared to other experimental groups. Lower (low and medium) stiffness hydrogels also appeared to attenuate the chronic inflammatory response characteristic of VML injuries, displaying similar levels of macrophage infiltration and polarization to healthy muscle. Together these findings illustrate the importance of hydrogel mechanical properties in supporting functional repair of VML injuries. Impact statement This report defines the role hydrogel mechanical properties play in the repair of volumetric muscle loss (VML) injuries. We show that an intermediate hydrogel stiffness (3 kPa) more compliant than adult muscle tissue facilitated improved and sustained regenerative outcomes up to 24 weeks postinjury in a rat latissimus dorsi model of VML. Muscles treated with 3 kPa hydrogels showed enhanced myogenesis and attenuation of the chronic inflammatory response characteristic of VML injuries. These results should help guide the future design of hydrogels for skeletal muscle tissue engineering and regeneration.

7 citations


Journal ArticleDOI
TL;DR: In this paper , a 3D-printing polycaprolactone (PCL) scaffold was constructed by 3D printing, then integrated with bone marrow mesenchymal stem cells (BMSCs) and self-assembling peptides (SAPs).
Abstract: Bone defects caused by infection, tumor, trauma, and so on remain difficult to treat clinically. Bone tissue engineering (BTE) has great application prospect in promoting bone defect repair. Polycaprolactone (PCL) is a commonly used material for creating BTE scaffolds. In addition, self-assembling peptides (SAPs) can function as the extracellular matrix and promote osteogenesis and angiogenesis. In the work, a PCL scaffold was constructed by 3D printing, then integrated with bone marrow mesenchymal stem cells (BMSCs) and SAPs. The research aimed to assess the bone repair ability of PCL/BMSC/SAP implants. BMSC proliferation in PCL/SAP scaffolds was assessed via Cell Counting Kit-8. In vitro osteogenesis of BMSCs cultured in PCL/SAP scaffolds was assessed by alkaline phosphatase staining and activity assays. Enzyme-linked immunosorbent assays were also performed to detect the levels of osteogenic factors. The effects of BMSC-conditioned medium from 3D culture systems on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) were assessed by scratch, transwell, and tube formation assays. After 8 weeks of in vivo transplantation, radiography and histology were used to evaluate bone regeneration, and immunohistochemistry staining was utilized to detect neovascularization. In vitro results demonstrated that PCL/SAP scaffolds promoted BMSC proliferation and osteogenesis compared to PCL scaffolds, and the PCL/BMSC/SAP conditional medium (CM) enhanced HUVEC migration and angiogenesis compared to the PCL/BMSC CM. In vivo results showed that, compared to the blank control, PCL, and PCL/BMSC groups, the PCL/BMSC/SAP group had significantly increased bone and blood vessel formation. Thus, the combination of BMSC-seeded 3D-printed PCL and SAPs can be an effective approach for treating bone defects. Impact statement Both polycaprolactone (PCL) and self-assembling peptides (SAPs) have been broadly applied in bone defect repair. However, the poor osteoinductivity of PCL and weak mechanical strength of SAPs have limited their clinical application. Here, a 3D-printed PCL scaffold was fabricated for seeding bone marrow mesenchymal stem cells (BMSCs), then combined with SAPs to construct a composite PCL/BMSC/SAP implant for treating the calvarial defect. We showed that transplantation of PCL/BMSC/SAP composite implants clearly promoted bone regeneration and neovascularization. To our knowledge, this is the first study to treat bone defects by combination of BMSC-seeded 3D-printed PCL and SAPs.

7 citations


Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper investigated the in vitro effects of bone marrow mesenchymal stem cell-derived exosomes (BM-MSC-Exs) on transforming growth factorβ1 (TGF-β1)-induced fibrosis in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms.
Abstract: Renal fibrosis (RF) predisposes patients to an increased risk of progressive chronic kidney disease, and effective treatments remain elusive. Mesenchymal stem cell (MSC)-derived exosomes are considered a new treatment for tissue damage. Our study aimed to investigate the in vitro effects of bone marrow MSC-derived exosomes (BM-MSC-Exs) on transforming growth factor-β1 (TGF-β1)-induced fibrosis in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. Herein, we found BM-MSC-Exs could inhibit TGF-β1-induced epithelial–mesenchymal transition (EMT) in HK-2 cells, and may involve autophagy activation of BM-MSC-Exs. Moreover, we first reported that after ceria nanoparticles (CeNPs) treatment, the improvements induced by BM-MSC-Ex on EMT were significantly enhanced by upregulating the expression of Nedd4Lof MSCs and promoting the secretion of exosomes, which contained Nedd4L. In addition, Nedd4L could activate autophagy in HK-2 cells. In conclusion, BM-MSC-Ex prevents the TGF-β1-induced EMT of renal tubular epithelial cells by transporting Nedd4L, which activates autophagy. The results of this in vitro experiment may extend to RF, whereby BM-MSC-Ex may also be used as a novel treatment for improving RF. Renal fibrosis (RF) is an important pathological change in chronic kidney disease that ultimately leads to end-stage renal failure, and effective treatments remain elusive. In this study, there are two contributions. First, our results suggest that bone marrow mesenchymal stem cell-derived exosomes (BM-MSC-Exs) can prevent transforming growth factor-β1 (TGF-β1)-induced epithelial–mesenchymal transition (EMT) of renal tubular epithelial cells through Nedd4L trafficking, which activates autophagy. Second, the improvement effects of BM-MSC-Ex on TGF-β1-induced HK-2 EMT can be enhanced by ceria nanoparticles (CeNPs). The findings in this study may be extended to RF: BM-MSC-Exs may be used as a novel treatment to improve RF.

6 citations


Journal ArticleDOI
TL;DR: In this paper , fibrin hydrogels enriched with laminin-111 (LM-111; 50-450 μg/mL) were used for the treatment of VML of the tibialis anterior in a rat model.
Abstract: Volumetric muscle loss (VML) is the surgical or traumatic loss of skeletal muscle, which can cause loss of limb function or permanent disability. VML injuries overwhelms the endogenous regenerative capacity of skeletal muscle and results in poor functional healing outcomes. Currently, there are no approved tissue engineering treatments for VML injuries. In this study, fibrin hydrogels enriched with laminin-111 (LM-111; 50-450 μg/mL) were used for the treatment of VML of the tibialis anterior in a rat model. Treatment with fibrin hydrogel containing 450 μg/mL of LM-111 (FBN450) improved muscle regeneration following VML injury. FBN450 hydrogel treatment increased the relative proportion of contractile to fibrotic tissue as indicated by the myosin: collagen ratio on day 28 post-VML injury. FBN450 hydrogels also enhanced myogenic protein expression and increased the quantity of small to medium size myofibers (500-2000 μm2) as well as innervated myofibers. Improved contractile tissue deposition due to FBN450 hydrogel treatment resulted in a significant improvement (∼60%) in torque production at day 28 postinjury. Taken together, these results suggest that the acellular FBN450 hydrogels provide a promising therapeutic strategy for VML that is worthy of further investigation. Impact statement Muscle trauma accounts for 50-70% of total military injuries and complications involving muscle result in ∼80% of delayed amputations. The lack of a clinical standard of care for volumetric muscle loss (VML) injuries presents an opportunity to develop novel regenerative therapies and improve healing outcomes. Laminin-111-enriched fibrin hydrogel may provide a promising therapy for VML that is worthy of further investigation. The acellular nature of these hydrogels will allow for easy off the shelf access to critically injured patients and fewer regulatory hurdles during commercialization.

Journal ArticleDOI
TL;DR: In this article , the authors validated the safety of lenticule banking that involved the collection of human lenticules from our eye clinic, transportation of the lentiules to a Singapore Ministry of Health-licensed lentiule bank, processing, and cryopreservation of the borrowed stromal stroma, which, after 3 months or, a longer term, 12 months were retrieved and transported to our laboratory for implantation in rabbit corneas.
Abstract: With the expected rise in patients undergoing refractive lenticule extraction worldwide, the number of discarded corneal stromal lenticules will increase. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules (for future therapeutic needs) could be advantageous. In this study, we validated the safety of lenticule banking that involved the collection of human lenticules from our eye clinic, transportation of the lenticules to a Singapore Ministry of Health-licensed lenticule bank, processing, and cryopreservation of the lenticules, which, after 3 months or, a longer term, 12 months, were retrieved and transported to our laboratory for implantation in rabbit corneas. The lenticule collection was approved by the SingHealth Centralised Institutional Review Board (CIRB). Both short-term and long-term cryopreserved lenticules, although not as transparent as fresh lenticules due to an altered collagen fibrillar packing, did not show any sign of rejection and cytotoxicity, and did not induce haze or neovascularization for 16 weeks even when antibiotic and steroidal administration were withdrawn after 8 weeks. The lenticular transparency progressively improved and was mostly clear after 4 weeks, the same period when we observed the stabilization of corneal hydration. We showed that the equalization of the collagen fibrillar packing of the lenticules with that of the host corneal stroma contributed to the lenticular haze clearance. Most importantly, no active wound healing and inflammatory reactions were seen after 16 weeks. Our study suggests that long-term lenticule banking is a feasible approach for the storage of stromal lenticules after refractive surgery. Since 2011, close to 3 million refractive lenticule extraction procedures have been performed. The majority of the extracted lenticules are discarded. The lenticules could have been cryopreserved and retrieved at a later date for therapeutic or refractive applications. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules could be advantageous. In this study, we simulated a lenticule banking service in a validated health authority-licensed facility and showed that long-term cryopreservation of the lenticules in the facility was safe and feasible in vivo.

Journal ArticleDOI
TL;DR: In this paper , a repeatable scaffold-free in vitro model of chondrocyte spheroid-based treatments of cartilage defects, to allow for systematic study and further optimization of this type of treatment.
Abstract: In vitro engineering of human articular cartilage (AC) is a regenerative medicine challenge. The main objective of this study was the development of a repeatable scaffold-free in vitro model of chondrocyte spheroid-based treatments of cartilage defects, to allow for systematic study and further optimization of this type of treatment. Human articular chondrocytes (HC) and immortalized mesenchymal cells differentiated in chondrocytes (Y201-Cs) were cultured in round-bottom 96-well plates to produce multicellular spheroids and their growth kinetics, and viability was evaluated over 7 days of culture. Then, the spheroids were assembled and cultured for 21 days on a gelatin-coated poly(lactic-co-glycolic acid) electrospun membrane (10 spheroids/cm2), following a protocol in line with the clinically approved Chondrosphere® (CO.DON AG) technique. Both HC and Y201-C cells formed compact and viable spheroids after 7 days of culture with a reduction of diameter over the 7 days from 1300 ± 150 μm to 600 ± 90 μm and from 1250 ± 60 μm to 800 ± 20 μm for HC and Y201-C, respectively. When the spheroids were transferred onto the support membrane, these adhered on the membrane itself and fused themselves, producing collagen type II (COL2A1) and aggrecan (ACAN), according to gene expression and glycosaminoglycans quantification analyses. We detected higher expression of COL2A1 in HC cells, while the Y201-C constructs were characterized by an increased ACAN expression. The approach we presented allows a standardizable production of spheroids with predictable geometry and the creation of a reproducible scaffold-free in vitro AC-like construct showing high expression of chondrogenic markers, using both HC and Y201-C. In addition, the bankable Y201-C cells provide an effective base model for experimentation with the spheroid approach to further enhance the process. Impact statement This is first work on the development of a repeatable scaffold-free in vitro model based on an optimized protocol in line with a recent clinically approved Chondrosphere® (CO.DON AG) technique. In addition, we demonstrated that a bankable cell type (Y201-C) could produce an engineered cartilage-like construct, giving a repeatable model as a key tool for experimentation of therapeutic treatment ahead of studies with heterogeneous cell populations.

Journal ArticleDOI
TL;DR: A review of computational models for Tissue Engineering and Regenerative Medicine (TERM) is presented in this article , where a review of general concepts and examples at experimental scientists with little or no computational modeling experience is presented.
Abstract: In recent years, the mathematical and computational sciences have developed novel methodologies and insights that can aid in designing advanced bioreactors, microfluidic setups or organ-on-chip devices, in optimizing culture conditions, or predicting long-term behavior of engineered tissues in vivo. In this review, we introduce the concept of computational models and how they can be integrated in an interdisciplinary workflow for Tissue Engineering and Regenerative Medicine (TERM). We specifically aim this review of general concepts and examples at experimental scientists with little or no computational modeling experience. We also describe the contribution of computational models in understanding TERM processes and in advancing the TERM field by providing novel insights. Impact Statement Although in recent years the use of mathematical and computational sciences has increased in the Tissue Engineering and Regenerative Medicine (TERM) field, we believe that a further integration of experimental and computational approaches has a huge potential for advancing the field due to the ability of models to explain and predict experimental results and efficiently optimize TERM product and process designs. By providing an overview of existing computational models, how they have contributed to the field, as well as a future perspective, this review represents an important step to help realize TERM's ultimate goal: a cure instead of care.

Journal ArticleDOI
TL;DR: The state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches.
Abstract: Osteoarthritis (OA) and chronic low back pain due to degenerative (intervertebral) disc disease (DDD) are two of the major causes of disabilities worldwide, affecting hundreds of millions of people and leading to a high socioeconomic burden. Although OA occurs in synovial joints and DDD occurs in cartilaginous joints, the similarities are striking, with both joints showing commonalities in the nature of the tissues and in the degenerative processes during disease. Consequently, repair strategies for articular cartilage (AC) and nucleus pulposus (NP), the core of the intervertebral disc, in the context of OA and DDD share common aspects. One of such tissue engineering approaches is the use of injectable hydrogels for AC and NP repair. In this review, the state-of-the-art and recent developments in injectable hydrogels for repairing, restoring, and regenerating AC tissue suffering from OA and NP tissue in DDD are summarized focusing on cell-free approaches. The various biomaterial strategies exploited for repair of both tissues are compared, and the synergies that could be gained by translating experiences from one tissue to the other are identified.

Journal ArticleDOI
TL;DR: In this paper , the authors used the Yucatan minipig as a clinically relevant large animal model to investigate the differences in functional properties of different donor ages for the generation of self-assembled cartilage.
Abstract: Cartilage does not naturally heal, and cartilage lesions from trauma and wear-and-tear can lead to eventual osteoarthritis. To address long-term repair, tissue engineering of functional biologic implants to treat cartilage lesions is desirable, but the development of such implants is hindered by several limitations, including (1) donor tissue scarcity due to the presence of diseased tissues in joints, (2) dedifferentiation of chondrocytes during expansion, and (3) differences in functional output of cells dependent on donor age. Toward overcoming these challenges, (1) costal cartilage has been explored as a donor tissue, and (2) methods have been developed to rejuvenate the chondrogenic phenotype of passaged chondrocytes for generating self-assembled neocartilage. However, it remains unclear how the rejuvenation processes are influenced by donor age and, thus, how to develop strategies that specifically target age-related differences. Using histological, biochemical, proteomic, and mechanical assays, this study sought to determine the differences among neocartilage generated from neonatal, juvenile, and adult donors using the Yucatan minipig, a clinically relevant large animal model. Based on the literature, a relatively young adult population of animals was chosen due to a reduction in functional output of human articular chondrocytes after 40 years of age. After isolation, costal chondrocytes were expanded, rejuvenated, and self-assembled, and the neocartilages were assessed. The aggregate modulus values of neonatal constructs were at least 1.65-fold of those from the juvenile or adult constructs. Poisson's ratio also significantly differed among all groups, with neonatal constructs exhibiting values 49% higher than adult constructs. Surprisingly, other functional properties such as tensile modulus and glycosaminoglycan content did not significantly differ among groups. Total collagen content was slightly elevated in the adult constructs compared to neonatal and juvenile constructs. A more nuanced view using bottom-up mass spectrometry showed that Col2a1 protein was not significantly different among groups, but protein content of several other collagen subtypes (i.e., Col1a1, Col9a1, Col11a2, and Col12a1) was modulated by donor age. For example, Col12a1 protein content in adult constructs was found to be 102.9% higher than neonatal-derived constructs. Despite these differences, this study shows that different aged donors can be used to generate neocartilages of similar functional properties. Impact statement Tissue-engineered neocartilage can be generated with functional properties that mimic native cartilage tissue. However, cell sourcing challenges hinder clinical translation of tissue-engineered cartilage. Chondrocytes can be expanded and rejuvenated for the generation of functional self-assembled cartilage, making an allogeneic approach feasible. However, it is currently unclear if donor age impacts functional properties. In this study, using the Yucatan minipig as a clinically relevant large animal model, we demonstrate that functional properties of self-assembled neocartilage are relatively consistent regardless of donor age, suggesting that a wider range of donor ages may be used for cartilage tissue engineering than previously expected.

Journal ArticleDOI
TL;DR: This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration.
Abstract: Bioelectronics presents a promising future in the field of embedded and implantable electronics, providing a range of functional applications, from personal health monitoring to bioactuators. However, due to the intrinsic difficulties present in producing and optimising bioelectronics, recent research has focused on utilising Machine Learning to reliably mitigate such issues and aid in process development. This review focuses on the recent developments of integrating Machine Learning into bioelectronics, aiding in a multitude of areas such as: material development, fabrication process optimisation and system integration. First, discussing how Machine Learning has aided in the materials development by identifying complex relationships between process input parameters and desired outputs, such as product design. Second, examine the advancements in Machine Learning to accurately optimise fabrication precision and stability for various 3D printing technologies. Third, provide an overview of how Machine Learning can greatly assist in the analysis of complex, non-linear relationships in data obtained from bioelectronics. Lastly, a summary of the challenges present with utilising Machine Learning with bioelectronics and any other developments in this field. Such advancements in the field of bioelectronics and Machine Learning could hopefully build a strong foundation for this research field, promoting smart optimisation together with effective use of Machine Learning to further enhance the effectiveness of such applications.

Journal ArticleDOI
TL;DR: In this article , the tendon-bone interface was regenerated using stacked cell sheets of tenogenic and osteogenic progenitors differentiated from human adipose-derived mesenchymal stem cells, resulting in a composite structure expressing markers of tendon, mineralized fibrocartilage and bone.
Abstract: Failure to regenerate the gradient tendon-bone interface of the enthesis results in poor clinical outcomes for surgical repair. The goal of this study was to evaluate the potential of composite cell sheets for engineering of the tendon-bone interface to improve regeneration of the functionally graded tissue. We hypothesize that stacking cell sheets at early stages of differentiation into tenogenic and osteogenic progenitors will create a composite structure with integrated layers. Cell sheets were fabricated on methyl cellulose and poly(N-isopropylacrylamide) thermally reversible polymers with human adipose-derived stem cells and differentiated into progenitors of tendon and bone with chemical induction media. Tenogenic and osteogenic cell sheets were stacked, and the engineered tendon-bone interface (TM-OM) was characterized in vitro in comparison to stacked cell sheet controls cultured in basal growth medium (GM-GM), osteogenic medium (OM-OM), and tenogenic medium (TM-TM). Samples were characterized by histology, quantitative real-time polymerase chain reaction, and immunofluorescent staining for markers of tendon, fibrocartilage, and bone including mineralization, scleraxis, tenomodulin, COL2, COLX, RUNX2, osteonectin, and osterix. After 1 week co-culture in basal growth medium, TM-OM cell sheets formed a tissue construct with integrated layers expressing markers of tendon, mineralized fibrocartilage, and bone with a spatial gradient in RUNX2 expression. Tenogenic cell sheets had increased expression of scleraxis and tenomodulin. Osteogenic cell sheets exhibited mineralization 1 week after stacking and upregulation of osterix and osteonectin. Additionally, in the engineered interface, there was significantly increased gene expression of IHH and COLX, indicative of endochondral ossification. These results highlight the potential for composite cell sheets fabricated with adipose-derived stem cells for engineering of the tendon-bone interface. Impact statement This study presents a method for fabrication of the tendon-bone interface using stacked cell sheets of tenogenic and osteogenic progenitors differentiated from human adipose-derived mesenchymal stem cells, resulting in a composite structure expressing markers of tendon, mineralized fibrocartilage, and bone. This work is an important step toward regeneration of the biological gradient of the enthesis and demonstrates the potential for engineering complex tissue interfaces from a single autologous cell source to facilitate clinical translation.

Journal ArticleDOI
TL;DR: Assessment of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury suggests that formoterol treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle.
Abstract: Volumetric muscle loss (VML) injuries represent a majority of military servicemember casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there are currently no standards for rehabilitation, leading to life-long disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due in part to impaired innervation and vascularization of the remaining muscle as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multi-muscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol, AICAR, pioglitazone, or sildenafil) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury naïve mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p<0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, pioglitazone, or sildenafil in improving contractile and metabolic functional outcomes. However, formoterol-treated VML mice had 18% greater peak-isometric torque (p<0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p<0.01) compared to VML untreated, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activities levels for complex I and complex II. These findings suggest that formoterol treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle.

Journal ArticleDOI
TL;DR: A new type of PRP long-term sustained-release composite scaffold material was constructed that effectively improved the survival, proliferation, and differentiation of cells in the transplanted area, thereby better promoting the repair of large bone defects.
Abstract: The combination of three-dimensionally (3D) printed scaffold materials and various cytokines can achieve the purpose of tissue reconstruction more efficiently. In the current study, we prepared Platelet-rich plasma (PRP)/gelatin microspheres combined with 3D printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffolds to solve the key problem that PRP cannot be released under control and the release time is too short, and thus better promote bone repair. Consequently, the composite scaffold displayed a good mechanical property and sustained cytokine release for approximately 3 weeks. Additionally, increased survival, proliferation, migration and osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were observed compared with the control groups. The in vivo study demonstrated that the composite scaffold with PRP/gelatin microspheres led to greater positive effects in promoting large bone defect repair. In conclusion, in the present study a new type of PRP long-term sustained-release composite scaffold material was constructed that effectively improved the survival, proliferation, and differentiation of cells in the transplanted area, thereby better promoting the repair of large bone defects.

Journal ArticleDOI
TL;DR: In conclusion, BM-MSC-Ex prevents the TGF-β1-induced EMT of renal tubular epithelial cells by transporting Nedd4L, which activates autophagy, and the results of this in vitro experiment may extend to renal fibrosis, whereby BM-MSC-Ex may also be used as a novel treatment for improving kidneys fibrosis.
Abstract: Renal fibrosis predisposes patients to an increased risk of progressive chronic kidney disease (CKD), and effective treatments remain elusive. Mesenchymal stem cell (MSC) derived exosomes are considered a new treatment for tissue damage. Our study aimed to investigate the in vitro effects of bone marrow MSC-derived exosomes (BM-MSC-Ex) on transforming growth factor-β1 (TGF-β1)-induced fibrosis in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. Herein, we found exosomes derived from bone marrow mesenchymal stem cells (BM-MSC-Ex) could inhibit TGF-β1-induced epithelial-mesenchymal transition (EMT) in HK-2 cells, and may involve autophagy activation of BM-MSC-Ex. Moreover, we first reported that after CeNPs treatment, the improvements induced by BM-MSC-Ex on EMT were significantly enhanced by up-regulating the expression of Nedd4Lof MSCs and promoting the secretion of exosomes, which contained Nedd4L. In addition, Nedd4L could activate autophagy in HK-2 cells. In conclusion, BM-MSC-Ex prevents the TGF-β1-induced EMT of renal tubular epithelial cells by transporting Nedd4L, which activates autophagy. The results of this in vitro experiment may extend to renal fibrosis, whereby BM-MSC-Ex may also be used as a novel treatment for improving renal fibrosis.

Journal ArticleDOI
TL;DR: In this paper , the authors used tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue, resulting in junction-specific features.
Abstract: Muscle and tendon injuries are prevalent and range from minor sprains and strains to traumatic, debilitating injuries. However, the interactions between these tissues during injury and recovery remain unclear. Three-dimensional tissue models that incorporate both tissues and a physiologically relevant junction between muscle and tendon may help understand how the two tissues interact. Here, we use tissue specific extracellular matrix (ECM) derived from muscle and tendon to determine how cells of each tissue interact with the microenvironment of the opposite tissue, resulting in junction-specific features. The ECM materials were derived from the Achilles tendon and gastrocnemius muscle, decellularized, and processed to form tissue-specific pre-hydrogel digests. The ECM materials were unique in respect to protein composition and included many types of ECM proteins, not just collagens. After digestion and gelation, ECM hydrogels had similar complex viscosities that were less than type I collagen hydrogels at the same concentration. C2C12 myoblasts and tendon fibroblasts were cultured in tissue-specific ECM conditioned media or encapsulated in tissue-specific ECM hydrogels to determine cell-matrix interactions and the effects on a muscle-tendon junction marker, paxillin. The ECM conditioned media had only a minor effect on the upregulation of paxillin in cells cultured in monolayer. However, cells cultured within ECM hydrogels had 50-70% higher paxillin expression than cells cultured in type I collagen hydrogels. Contraction of the ECM hydrogels varied by the type of ECM used. Subsequent experiments with a varying density of type I collagen (and thus contraction) showed no correlation between paxillin expression and the amount of gel contraction, suggesting that a constituent of the ECM was the driver of paxillin expression in the ECM hydrogels. In addition, another junction marker, type XXII collagen, had similar expression patterns as paxillin, with smaller effect sizes. Using tissue-specific ECM allowed for the de-construction of the cell-matrix interactions similar to muscle-tendon junctions to study the expression of myotendinous junction-specific proteins. Impact statement The muscle-tendon junction is an important feature of muscle-tendon units; however, despite crosstalk between the two tissue types, the junction is often overlooked in current research. Deconstructing the cell-matrix interactions will provide the opportunity to study significant junction-specific features and markers that should be included in tissue models of the muscle-tendon unit, while gaining a deeper understanding of the natural junction. This research aims at informing future methods to engineer a more relevant multi-tissue platform to study the muscle-tendon unit.

Journal ArticleDOI
TL;DR: In this paper , a 3D cell printed soft-hard construct was used to establish a soft hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and Alginate /gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs).
Abstract: Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (p < 0.01), and slow degradation rate (p < 0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80% ± 1.14%, while BMSC viability in AGH was 86.59% ± 0.75%. Polymerase chain reaction results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (p < 0.01). After 8-week implantation into the dorsum of 6- to 8-week-old male athymic and inbred (BALB/c) nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation. Impact statement Alveolar ridge resorption after tooth extraction has posed great difficulty in the subsequent restorative procedure. Clinically, to preserve the dimension of alveolar ridge, covering soft tissue healing and underlying bone formation is necessary after tooth extraction. Three-dimensional (3D) cell printing, which can distribute different biomaterials and cells with spatial control, provides a novel approach to develop a customized plug to put in the fresh socket to minimize bone resorption and improve gingiva growth. In this study, an integrated and heterogeneous soft-hard construct with lock-key structure was successfully developed using 3D cell printing. The physicochemical and biological properties were tested in vitro and in vivo. This 3D cell printed soft-hard construct will be a customized plug in alveolar ridge preservation in the future.

Journal ArticleDOI
TL;DR: In this paper , a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity.
Abstract: Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured dorsal root ganglion explants. The nerve cells were also encapsulated in the GelMA/pDNM-G hydrogel for 3D culture or underwent cell-laden bioprinting with high cell viability. The preparation of such GelMA/dECM-G hydrogels enabled the recapitulation of functional tissues through extrusion-based bioprinting, which holds great potential for applications in regenerative medicine. Impact statement Tissue-derived decellularized matrices have drawn broad interests for their versatile applications in tissue engineering and regenerative medicine, especially the decellularized peripheral nerve matrix, which can effectively facilitate axonal extension, remyelination, and neural functional restoration after peripheral nerve injury. However, neither decellularized porcine nerve matrix (pDNM) nor pDNM hydrogel (pDNM-G) can be directly used in three-dimensional printing for personalized nerve constructs or cell transplantation. This work developed a hybrid hydrogel consisting of decellularized extracellular matrix hydrogel (dECM-G) and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. The GelMA/pDNM-G hydrogel retained high bioactivity and tissue-specificity due to its dECM-G content. Such hybrid hydrogel systems built up a springboard in advanced biomaterials for neural tissue engineering, as well as a promising strategy for dECM containing bioprinting.

Journal ArticleDOI
TL;DR: Acellular SIS ECM scaffolds were implanted in the temporomandibular joint (TMJ) disc following discectomy and allowed to remodel for 2, 4, 12, and 24 weeks postimplantation as discussed by the authors .
Abstract: The temporomandibular joint (TMJ) disc is a fibrocartilaginous tissue located between the condyle of the mandible and glenoid fossa and articular eminence of the temporal bone. Damage or derangement of the TMJ disc can require surgical removal (discectomy) to restore function. Removal of the TMJ disc, however, leaves the joint space vulnerable to condylar remodeling and degradation, potentially leading to long-term complications. No consistently effective clinical option exists for repair or replacement of the disc following discectomy. This study investigates the use of an acellular scaffold composed of extracellular matrix (ECM) derived from small intestinal submucosa (SIS) as a regenerative template for the TMJ disc in a porcine model. Acellular SIS ECM scaffolds were implanted following discectomy and allowed to remodel for 2, 4, 12, and 24 weeks postimplantation. Remodeling of the implanted device was assessed by longitudinal magnetic resonance imaging (MRI) over the course of 6 months, as well as gross morphologic, histologic, biochemical, and biomechanical analysis (tension and compression) of explanted tissues (disc and condyle) at the time of sacrifice. When the scaffold remained in the joint space, longitudinal MRI demonstrated that the scaffolds promoted new tissue formation within the joint space throughout the study period. The scaffolds were rapidly populated with host-derived cells and remodeled with formation of new, dense, aligned fibrocartilage resembling native tissue as early as 1 month postimplantation. De-novo formation of peripheral muscular and tendinous attachments resembling those in native tissue was also observed. The remodeled scaffolds approached native disc biochemical composition and compressive modulus, and possessed 50% of the tensile modulus within 3 months postimplantation. No degradation of the condylar surface was observed. These results suggest that this acellular bioscaffold fills a medical need for which there is currently no effective treatment and may represent a clinically relevant "off-the-shelf" implant for reconstruction of the TMJ disc.

Journal ArticleDOI
Jan Seidel1
TL;DR: In this paper , the authors evaluated the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of volumetric muscle loss (VML) injury.
Abstract: Volumetric muscle loss (VML) injuries represent a majority of military service member casualties and are common in civilian populations following blunt and/or penetrating traumas. Characterized as a skeletal muscle injury with permanent functional impairments, there is currently no standard for rehabilitation, leading to lifelong disability. Toward developing rehabilitative strategies, previous research demonstrates that the remaining muscle after a VML injury lacks similar levels of plasticity or adaptability as healthy, uninjured skeletal muscle. This may be due, in part, to impaired innervation and vascularization of the remaining muscle, as well as disrupted molecular signaling cascades commonly associated with muscle adaptation. The primary objective of this study was to assess the ability of four pharmacological agents with a strong record of modulating muscle contractile and metabolic function to improve functional deficits in a murine model of VML injury. Male C57BL/6 mice underwent a 15% multimuscle VML injury of the posterior hindlimb and were randomized into drug treatment groups (formoterol [FOR], 5-aminoimidazole-4-carboxamide riboside [AICAR], pioglitazone [PIO], or sildenafil [SIL]) or untreated VML group. At the end of 60 days, the injury model was first validated by comparison to age-matched injury-naive mice. Untreated VML mice had 22% less gastrocnemius muscle mass, 36% less peak-isometric torque, and 27% less maximal mitochondrial oxygen consumption rate compared to uninjured mice (p < 0.01). Experimental drug groups were, then, compared to VML untreated, and there was minimal evidence of efficacy for AICAR, PIO, or SIL in improving contractile and metabolic functional outcomes. However, FOR-treated VML mice had 18% greater peak isometric torque (p < 0.01) and permeabilized muscle fibers had 36% greater State III mitochondrial oxygen consumption rate (p < 0.01) compared to VML untreated mice, suggesting an overall improvement in muscle condition. There was minimal evidence that these benefits came from greater mitochondrial biogenesis and/or mitochondrial complex protein content, but could be due to greater enzyme activity levels for complex I and complex II. These findings suggest that FOR treatment is candidate to pair with a rehabilitative approach to maximize functional improvements in VML-injured muscle. Volumetric muscle loss (VML) injuries result in deficiencies in strength and mobility, which have a severe impact on patient quality of life. Despite breakthroughs in tissue engineering, there are currently no treatments available that can restore function to the affected limb. Our data show that treatment of VML injuries with clinically available and FDA-approved formoterol (FOR), a beta-agonist, significantly improves strength and metabolism of VML-injured muscle. FOR is therefore a promising candidate for combined therapeutic approaches (i.e., regenerative rehabilitation) such as pairing FOR with structured rehabilitation or cell-seeded biomaterials as it may provide greater functional improvements than either strategy alone.

Journal ArticleDOI
TL;DR: In this article , an immunodeficient swine model was used to support the expansion of human hepatocytes and identify barriers to their clinical application, which has not been previously shown to have a significant role in xenograft rejection.
Abstract: The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. The expansion properties of human hepatocytes in immunodeficient mice are well known. However, little has been reported about larger animals that are more scalable and practical for clinical purposes. Therefore, we engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. Immunodeficient swine were engineered by knockout of the recombinase-activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. Human albumin was measured as a marker of engraftment. Cytotoxicity against ihHCs was measured in transplanted piglets and control swine. We initially detected higher levels of human albumin in cord blood of newborn FAH/RAG2-deficient (FR) pigs compared with immunocompetent controls (196.26 ng/dL vs. 39.29 ng/dL, p = 0.008), indicating successful engraftment of ihHCs after IUCT and adaptive immunity in the fetus. Although rare hepatocytes staining positive for human albumin were observed, levels of human albumin did not rise after birth, but declined, suggesting rejection of xenografted ihHCs. Cytotoxicity against ihHCs increased after birth by 3.8% (95% CI: [2.1%-5.4%], p < 0.001) and inversely correlated with declining levels of human albumin (p = 2.1 × 10-5, R2 = 0.17). Circulating numbers of T cells and B cells were negligible in FR pigs. However, circulating natural killer (NK) cells exerted cytotoxicity against ihHCs. NK cell activity was lower in immunodeficient piglets after IUCT than in naive controls (30.4% vs. 40.1%, p = 0.011, 95% CI for difference [2.7%-16.7%]). In conclusion, ihHCs were successfully engrafted in FR swine after IUCT. NK cells were a significant barrier to expansion of hepatocytes. New approaches are needed to overcome this hurdle and allow large-scale expansion of human hepatocytes in immunodeficient swine. Impact statement There is currently a need for robust expansion of human hepatocytes. We describe an immunodeficient swine model into which we engrafted immature human hepatocytes (ihHCs). We identified the mechanism of the eventual graft rejection by the intact NK cell population, which has not been previously shown to have a significant role in xenograft rejection. By both improving engraftment and reducing NK cell-mediated cytotoxicity toward the graft through intrauterine cell transfer, we confirmed the presence of residual adaptive immunity in this model of immunodeficiency and the ability to induce hyposensitization in the NK cell population by taking advantage of the fetal microenvironment.

Journal ArticleDOI
TL;DR: In this article , small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids.
Abstract: The production of a clinically useful engineered cartilage is an outstanding and unmet clinical need. High-throughput RNA sequencing provides a means of characterizing the molecular phenotype of populations of cells and can be leveraged to better understand differences among source cells, derivative engineered tissues, and target phenotypes. In this study, small RNA sequencing is utilized to comprehensively characterize the microRNA transcriptomes (miRNomes) of native human neonatal articular cartilage and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) differentiating into cartilage organoids, contrasting the microRNA regulation of engineered cartilage with that of a promising target phenotype. Five dominant microRNAs are upregulated during cartilage organoid differentiation and disproportionately regulate transcription factors: miR-148a-3p, miR-140-3p, miR-27b-3p, miR-140-5p, and miR-181a-5p. Two microRNAs that dominate the miRNomes of hBM-MSCs, miR-21-5p and miR-143-3p, persist throughout the differentiation process and may limit the ability of these cells to differentiate into an engineered cartilage resembling target native articular cartilage. By using predictive bioinformatics tools and antagomir inhibition, these persistent microRNAs are shown to destabilize the mRNA of genes with known or potential roles in cartilage biology including FGF18, TGFBR2, TET1, STOX2, ARAP2, N4BP2L1, LHX9, NFIA, and RPS6KA5. These results shed light on the extent to which only a few microRNAs contribute to the complex regulatory environment of hBM-MSCs for engineered tissues. MicroRNAs are emerging as important controlling elements in the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). By using a robust bioinformatic approach and further validation in vitro, here we provide a comprehensive characterization of the microRNA transcriptomes (miRNomes) of a commonly studied and clinically promising source of multipotent cells (hBM-MSCs), a gold standard model of in vitro chondrogenesis (hBM-MSC-derived cartilage organoids), and an attractive in vivo target phenotype for clinically useful engineered cartilage (neonatal articular cartilage). These analyses highlighted a specific set of microRNAs involved in the chondrogenic program that could be manipulated to acquire a more robust articular cartilage-like phenotype. This characterization provides researchers in the cartilage tissue engineering field a useful atlas with which to contextualize microRNA involvement in complex differentiation pathways.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper used Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4) to enrich mesenchymal stromal cells (MSCs) after only 4 days of treatment.
Abstract: Mesenchymal stromal cells (MSCs) have been widely investigated for their regenerative capacity, anti-inflammatory properties and beneficial immunomodulatory effects across multiple clinical indications. Nevertheless, their widespread clinical utilization is limited by the variability in MSC quality, impacted by donor age, metabolism, and disease. Human induced pluripotent stem cells (hiPSCs) generated from readily accessible donor tissues, are a promising source of stable and rejuvenated MSC but differentiation methods generally require prolonged culture and result in low frequencies of stable MSCs. To overcome this limitation, we have optimized a quick and efficient method for hiPSC differentiation into footprint-free MSCs (human induced MSCs [hiMSCs]) in this study. This method capitalizes on the synergistic action of growth factors Wnt3a and Activin A with bone morphogenetic protein-4 (BMP4), leading to an enrichment of MSC after only 4 days of treatment. These hiMSCs demonstrate a significant upregulation of mesenchymal stromal markers (CD105+, CD90+, CD73, and cadherin 11) compared with bone marrow-derived MSCs (bmMSCs), with reduced expression of the pluripotency genes (octamer-binding transcription factor [Oct-4], cellular myelocytomatosis oncogene [c-Myc], Klf4, and Nanog homebox [Nanog]) compared with hiPSC. Moreover, they show improved proliferation capacity in culture without inducing any teratoma formation in vivo. Osteogenesis, chondrogenesis, and adipogenesis assays confirmed the ability of hiMSCs to differentiate into the three different lineages. Secretome analyses showed cytokine profiles compared with bmMSCs. Encapsulated hiMSCs in alginate beads cocultured with osteoarthritic (OA) cartilage explants showed robust immunomodulation, with stimulation of cell growth and proteoglycan production in OA cartilage. Our quick and efficient protocol for derivation of hiMSC from hiPSC, and their encapsulation in microbeads, therefore, presents a reliable and reproducible method to boost the clinical applications of MSCs.

Journal ArticleDOI
TL;DR: The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes.
Abstract: Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologies have now been applied to diverse areas of tissue engineering research, including biomaterial design, scaffold fabrication, and cell/tissue modeling. Emerging ML-empowered strategies include machine-optimized polymer synthesis, predictive modeling of scaffold fabrication processes, complex analyses of structure-function relationships, and deep learning of spatialized cell phenotypes and tissue composition. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research.