scispace - formally typeset
Open AccessPosted Content

A Flexible Wideband Millimeter-Wave Channel Sounder with Local Area and NLOS to LOS Transition Measurements

TLDR
This work shows that when implementing beamforming at the transmitter at mmWave, the omnidirectional received power over a local area has little fluctuation among receiver locations separated by a few to several meters.
Abstract
This paper presents a millimeter-wave (mmWave) wideband sliding correlator channel sounder with flexibility to operate at various transmission rates. The channel sounder can transmit and receive up to 1 GHz of RF null-to-null bandwidth while measuring a 2 nanosecond multipath time resolution. The system architecture takes advantage of field-programmable gate arrays (FPGAs), high-speed digital-to-analog converters (DACs), and low phase noise Rubidium (Rb) references for synchronization. Using steerable narrowbeam antennas, the system can measure up to 185 dB of path loss. The channel sounder is used to measure the directional and omnidirectional received power as a receiver transitions from line-of-sight to non-line-of-sight conditions down an urban canyon. A 25 dB drop in omnidirectional received power was observed as the receiver transitioned from line-of-sight (LOS) conditions to deeply shadowed non-LOS (NLOS) conditions. The channel sounder was also used to study signal variation and spatial consistency for a local set of receiver locations arranged in a cluster spanning a 5 m x 10 m local area, where the omnidirectional received power in LOS and NLOS environments is found to be relatively stable with standard deviations of received power of 2.2 dB and 4.3 dB, respectively. This work shows that when implementing beamforming at the transmitter at mmWave, the omnidirectional received power over a local area has little fluctuation among receiver locations separated by a few to several meters.

read more

Citations
More filters
Journal ArticleDOI

Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond

TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Proceedings ArticleDOI

5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning

TL;DR: A methodology is presented that combines a vehicle traffic simulator with a ray-tracing simulator, to generate channel realizations representing 5G scenarios with mobility of both transceivers and objects to investigate beam-selection techniques on vehicle-to-infrastructure using millimeter waves.
Journal ArticleDOI

A Flexible Millimeter-Wave Channel Sounder With Absolute Timing

TL;DR: The mmWave channel sounder described here may be used for accurate spatial and temporal ray-tracing calibration, to identify individual multipath components, to measure antenna patterns, for constructing spatial profiles of mmWave channels, and for developing statistical channel impulse response models in time and space.
Journal ArticleDOI

Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications

TL;DR: In this article, the authors studied radio propagation mechanisms that impact handoffs, air interface design, beam steering, and multiple-input multiple-output (MIMO) for 5G mobile communication systems.
Posted Content

Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz

TL;DR: In this paper, the authors summarized wireless communication research and activities above 100 GHz, overviews the results of previously published propagation measurements at D-band (110-170 GHz), provides the design of a 140 GHz wideband channel sounder system, and proposes indoor wideband propagation measurements and penetration measurements for common materials at 140 GHz which were not previously investigated.
References
More filters
Book

Wireless Communications: Principles and Practice

TL;DR: WireWireless Communications: Principles and Practice, Second Edition is the definitive modern text for wireless communications technology and system design as discussed by the authors, which covers the fundamental issues impacting all wireless networks and reviews virtually every important new wireless standard and technological development, offering especially comprehensive coverage of the 3G systems and wireless local area networks (WLANs).
Journal ArticleDOI

Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Book

Introduction to Radar Systems

TL;DR: This chapter discusses Radar Equation, MTI and Pulse Doppler Radar, and Information from Radar Signals, as well as Radar Antenna, Radar Transmitters and Radar Receiver.
Journal ArticleDOI

Five disruptive technology directions for 5G

TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Journal ArticleDOI

An introduction to millimeter-wave mobile broadband systems

TL;DR: This article introduces a millimeter-wave mobile broadband (MMB) system as a candidate next generation mobile communication system and demonstrates the feasibility for MMB to achieve gigabit-per-second data rates at a distance up to 1 km in an urban mobile environment.
Related Papers (5)