scispace - formally typeset
Book ChapterDOI

A Multi-class Image Classifier for Assisting in Tumor Detection of Brain Using Deep Convolutional Neural Network

Reads0
Chats0
TLDR
A patch-based automated segmentation of brain tumor is proposed using a deep convolutional neural network with small Convolutional kernels and leaky rectifier linear units (LReLU) as an activation function and promising results are obtained depending on the ground truth.
Abstract
Segmentation of brain tumor is a very crucial task from the medical points of view, such as in surgery and treatment planning. The tumor can be noticeable at any region of the brain with various size and shape due to its nature, that makes the segmentation task more difficult. In this present work, we propose a patch-based automated segmentation of brain tumor using a deep convolutional neural network with small convolutional kernels and leaky rectifier linear units (LReLU) as an activation function. Present work efficiently segments multi-modalities magnetic resonance (MR) brain images into normal and tumor tissues. The presence of small convolutional kernels allow more layers to form a deeper architecture and less number of the kernel weights in each layer during training. Leaky rectifier linear unit (LReLU) solves the problem of rectifier linear unit (ReLU) and increases the speed of the training process. The present work can deal with both high- and low-grade tumor regions on MR images. BraTS 2015 dataset has been used in the present work as a standard benchmark dataset. The presented network takes T1, T2, T1c, and FLAIR MR images from each subject as inputs and produces the segmented labels as outputs. It is experimentally observed that the present work has obtained promising results than the existing algorithms depending on the ground truth.

read more

Citations
More filters
Journal ArticleDOI

An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images.

TL;DR: In this article, the authors proposed a robust deep learning-based model with three different CNN architectures along with pre-defined handcrafted features for brain tumor segmentation, mainly to find out more prominent boundaries of the core and enhanced tumor regions.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Proceedings Article

Understanding the difficulty of training deep feedforward neural networks

TL;DR: The objective here is to understand better why standard gradient descent from random initialization is doing so poorly with deep neural networks, to better understand these recent relative successes and help design better algorithms in the future.
Related Papers (5)