scispace - formally typeset
Proceedings ArticleDOI

A Practical Transfer Learning Algorithm for Face Verification

TLDR
This work proposes a principled transfer learning approach for merging plentiful source-domain data with limited samples from some target domain of interest to create a classifier that ideally performs nearly as well as if rich target- domain data were present.
Abstract
Face verification involves determining whether a pair of facial images belongs to the same or different subjects. This problem can prove to be quite challenging in many important applications where labeled training data is scarce, e.g., family album photo organization software. Herein we propose a principled transfer learning approach for merging plentiful source-domain data with limited samples from some target domain of interest to create a classifier that ideally performs nearly as well as if rich target-domain data were present. Based upon a surprisingly simple generative Bayesian model, our approach combines a KL-divergence based regularizer/prior with a robust likelihood function leading to a scalable implementation via the EM algorithm. As justification for our design choices, we later use principles from convex analysis to recast our algorithm as an equivalent structured rank minimization problem leading to a number of interesting insights related to solution structure and feature-transform invariance. These insights help to both explain the effectiveness of our algorithm as well as elucidate a wide variety of related Bayesian approaches. Experimental testing with challenging datasets validate the utility of the proposed algorithm.

read more

Citations
More filters
Proceedings ArticleDOI

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

TL;DR: This work revisits both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network.
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Proceedings ArticleDOI

Deep Learning Face Representation from Predicting 10,000 Classes

TL;DR: It is argued that DeepID can be effectively learned through challenging multi-class face identification tasks, whilst they can be generalized to other tasks (such as verification) and new identities unseen in the training set.
Journal ArticleDOI

Deep Learning for Computer Vision: A Brief Review.

TL;DR: A brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders are provided.
Proceedings Article

Deep Learning Face Representation by Joint Identification-Verification

TL;DR: This paper shows that the face identification-verification task can be well solved with deep learning and using both face identification and verification signals as supervision, and the error rate has been significantly reduced.
References
More filters
Journal ArticleDOI

Eigenfaces vs. Fisherfaces: recognition using class specific linear projection

TL;DR: A face recognition algorithm which is insensitive to large variation in lighting direction and facial expression is developed, based on Fisher's linear discriminant and produces well separated classes in a low-dimensional subspace, even under severe variations in lighting and facial expressions.

Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments

TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Book ChapterDOI

Adapting visual category models to new domains

TL;DR: This paper introduces a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution.
Book ChapterDOI

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

TL;DR: A face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression is developed and the proposed “Fisherface” method has error rates that are significantly lower than those of the Eigenface technique when tested on the same database.
Proceedings ArticleDOI

Geodesic flow kernel for unsupervised domain adaptation

TL;DR: This paper proposes a new kernel-based method that takes advantage of low-dimensional structures that are intrinsic to many vision datasets, and introduces a metric that reliably measures the adaptability between a pair of source and target domains.
Related Papers (5)