scispace - formally typeset
Open AccessProceedings ArticleDOI

Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

TLDR
Li et al. as mentioned in this paper proposed to search the network level structure in addition to the cell level structure, which formed a hierarchical architecture search space and achieved state-of-the-art performance without any ImageNet pretraining.
Abstract
Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification. In this paper, we study NAS for semantic image segmentation. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Auto-DeepLab, our architecture searched specifically for semantic image segmentation, attains state-of-the-art performance without any ImageNet pretraining.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

TL;DR: UNet++ as mentioned in this paper proposes an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision, leading to a highly flexible feature fusion scheme.
Posted Content

Neural Architecture Search: A Survey

TL;DR: An overview of existing work in this field of research is provided and neural architecture search methods are categorized according to three dimensions: search space, search strategy, and performance estimation strategy.
Journal ArticleDOI

Deep High-Resolution Representation Learning for Visual Recognition

TL;DR: The High-Resolution Network (HRNet) as mentioned in this paper maintains high-resolution representations through the whole process by connecting the high-to-low resolution convolution streams in parallel and repeatedly exchanging the information across resolutions.
Posted Content

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

TL;DR: Huang et al. as discussed by the authors proposed Pyramid Vision Transformer (PVT), which is a simple backbone network useful for many dense prediction tasks without convolutions, and achieved state-of-the-art performance on the COCO dataset.
Posted Content

CCNet: Criss-Cross Attention for Semantic Segmentation

TL;DR: This work proposes a Criss-Cross Network (CCNet) for obtaining contextual information in a more effective and efficient way and achieves the mIoU score of 81.4 and 45.22 on Cityscapes test set and ADE20K validation set, respectively, which are the new state-of-the-art results.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Related Papers (5)