scispace - formally typeset
Open AccessJournal ArticleDOI

Automatic Creation of Semantically Rich 3D Building Models from Laser Scanner Data

Reads0
Chats0
TLDR
A method to automatically convert the raw 3D point data from a laser scanner positioned at multiple locations throughout a facility into a compact, semantically rich information model that is capable of identifying and modeling the main visible structural components of an indoor environment despite the presence of significant clutter and occlusion.
About
This article is published in Automation in Construction.The article was published on 2013-05-01 and is currently open access. It has received 576 citations till now. The article focuses on the topics: Laser scanning & Point cloud.

read more

Figures
Citations
More filters
Journal ArticleDOI

Automatic method for building indoor boundary models from dense point clouds collected by laser scanners.

TL;DR: A method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility is presented.
Journal ArticleDOI

Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction Applications

TL;DR: The state-of-the-art methods to acquire and process 3D point cloud data for construction applications are reviewed and the different processing methods and algorithms are compared and discussed in detail, which provides a useful guidance to both researchers and industry practitioners for adopting point cloudData in the construction industry.
Journal ArticleDOI

Indoor 3D reconstruction from point clouds for optimal routing in complex buildings to support disaster management

TL;DR: A complete workflow that allows to generate 3D models from point clouds of buildings and extract fine-grained indoor navigation networks from those models, to support advanced path planning for disaster management and navigation of different types of agents is introduced.
Journal ArticleDOI

Ten questions concerning building information modelling

TL;DR: The author asks and answers ten key questions about BIM, including what it is, how it will develop, how real are the promises and fears of BIM and what is its impact.
Journal ArticleDOI

The isprs benchmark on indoor modelling

TL;DR: The benchmark dataset comprising several point clouds of indoor environments captured by different sensors is presented and the evaluation and comparison of indoor modelling methods based on manually created reference models and appropriate quality evaluation criteria is discussed.
References
More filters
Journal ArticleDOI

Original Contribution: Stacked generalization

David H. Wolpert
- 05 Feb 1992 - 
TL;DR: The conclusion is that for almost any real-world generalization problem one should use some version of stacked generalization to minimize the generalization error rate.
Proceedings ArticleDOI

Image inpainting

TL;DR: A novel algorithm for digital inpainting of still images that attempts to replicate the basic techniques used by professional restorators, and does not require the user to specify where the novel information comes from.
Journal ArticleDOI

Photo tourism: exploring photo collections in 3D

TL;DR: This work presents a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface that consists of an image-based modeling front end that automatically computes the viewpoint of each photograph and a sparse 3D model of the scene and image to model correspondences.
Proceedings ArticleDOI

Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach

TL;DR: This work presents a new approach for modeling and rendering existing architectural scenes from a sparse set of still photographs, which combines both geometry-based and imagebased techniques, and presents view-dependent texture mapping, a method of compositing multiple views of a scene that better simulates geometric detail on basic models.
Related Papers (5)
Frequently Asked Questions (11)
Q1. What are the contributions in "Automatic creation of semantically rich 3d building models from laser scanner data" ?

This paper presents a method to automatically convert the raw 3D point data from a laser scanner positioned at multiple locations throughout a building into a compact, semantically rich model. Then, the authors perform a detailed analysis of the recognized surfaces to locate windows and doorways. The authors evaluated the method on a large, highly cluttered data set of a building with forty separate rooms yielding promising results. 

Their experiments suggest that the context aspect of their algorithm improves recognition performance by about 6% and that the most useful contextual features are coplanarity and orthogonality. 

In the first phase, planar patches are extracted from the point cloud and a context-based machine learning algorithm is used to label the patches as wall, ceiling, floor, or clutter. 

The detailed surface modeling phase of the algorithm operates on each planar patch produced by the contextbased modeling process, detecting the occluded regions and regions within openings in the surface. 

A learning algorithm is used to encode the characteristics of opening shape and location, which allows the algorithm to infer the shape of an opening even when it is partially occluded. 

The authors are currently working on completing the points-to-BIM pipeline by implementing an automated method to convert the surface-based representation produced by their algorithm into a volumetric representation that is commonly used for BIMs. 

Detecting openings in unoccluded surfaces can be achieved by analyzing the data density and classifying low density areas as openings. 

The classifier uses local features computed on each patch in isolation as well as features describing the relationship between each patch and its nearest neighbors. 

These models, which are generally known as building information models (BIMs), are used for many purposes, including planning and visualization during the design phase, detection of mistakes made during construction, and simulation and space planning during the management phase. 

The result of this process is a compact model of the walls, floor, and ceiling of a room, with each patch labeled according to its type. 

Building modeling algorithms are frequently demonstrated on simple examples like hallways that are devoid of furniture or other objects that would obscure the surfaces to be modeled.