scispace - formally typeset

Bayesian Filtering and Smoothing

Simo Särkkä
- Vol. 3, pp I-XXII, 1
Reads0
Chats0
TLDR
This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract
Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review

TL;DR: This review categorises data-driven battery health estimation methods according to their underlying models/algorithms and discusses their advantages and limitations, then focuses on challenges of real-time battery health management and discuss potential next-generation techniques.
Book

State Estimation for Robotics

TL;DR: In this paper, the authors present common sensor models and practical advice on how to carry out state estimation for rotations and other state variables, including batch estimation, the Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection and continuous-time trajectory estimation.
Journal ArticleDOI

Using Inertial Sensors for Position and Orientation Estimation

TL;DR: In recent years, micro-machined electromechanical system inertial sensors (3D accelerometers and 3D gyroscopes) have become widely available due to their small size and low cost.
Book

Applied Stochastic Differential Equations

Simo Särkkä, +1 more
TL;DR: The topic of this book is stochastic differential equations (SDEs), which are differential equations that produce a different “answer” or solution trajectory each time they are solved, and the emphasis is on applied rather than theoretical aspects of SDEs.
Journal ArticleDOI

A Systematization of the Unscented Kalman Filter Theory

TL;DR: With the proposed systematization of the Unscented Kalman Filter theory, the symmetric sets of sigma points in the literature are formally justified, and the proposed SRUKF has improved computational properties when compared to state-of-the-art methods.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Digital Communications

Journal ArticleDOI

Pattern Recognition and Machine Learning

Radford M. Neal
- 01 Aug 2007 - 
TL;DR: This book covers a broad range of topics for regular factorial designs and presents all of the material in very mathematical fashion and will surely become an invaluable resource for researchers and graduate students doing research in the design of factorial experiments.
Journal ArticleDOI

Novel approach to nonlinear/non-Gaussian Bayesian state estimation

TL;DR: An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters, represented as a set of random samples, which are updated and propagated by the algorithm.