scispace - formally typeset
Journal ArticleDOI

Biochemical Limitations to Carbon Assimilation in C3 Plants—A Retrospective Analysis of the A/Ci Curves from 109 Species

TLDR
In this paper, the authors analyzed 164 previously published A/C, curves for 109 C3 plant species and found that the rate of carboxylation, Vcmax, ranged from 6/umol m~2 s"1 for the coniferous species Picea abies to 194jj,mol m" 2 s" 1 for the agricultural species Beta vulgaris.
Abstract
differences in the assimilation of atmospheric CO2 depends upon differences in the capacities for the biochemical reactions that regulate the gas-exchange process. Quantifying these differences for more than a few species, however, has proven difficult. Therefore, to understand better how species differ in their capacity for CO2 assimilation, a widely used model, capable of partitioning limitations to the activity of ribulose-l,5-W.sphosphate carboxylase-oxygenase, to the rate of ribulose 1,5-tophosphate regeneration via electron transport, and to the rate of triose phosphate utilization was used to analyse 164 previously published A/C, curves for 109 C3 plant species. Based on this analysis, the maximum rate of carboxylation, Vcmax, ranged from 6/umol m~2 s"1 for the coniferous species Picea abies to 194jj,mol m" 2 s"1 for the agricultural species Beta vulgaris, and averaged 64^mol m" 2 s"1 across all species. The maximum rate of electron transport, Jmx, ranged from 17/^mol m~2 s"1 again for Picea abies to 372/j.mol m~2 s"1 for the desert annual Mahastrum rotundifolium, and averaged 134fxmol m~2 s"1 across all species. A strong positive correlation between Vc^x and Jmax indicated that the assimilation of CO2 was regulated in a co-ordinated manner by these two component processes. Of the AjC{ curves analysed, 23 showed either an insensitivity or reversed-sensitivity to increasing CO2 concentration, indicating that CO2 assimilation was limited by the utilization of triose phosphates. The rate of triose phosphate utilization ranged from 4-9/xtnol m" 2 s"1 for the tropical perennial Tabebuia rosea to 20-1 /xmol m~2 s"1 for the weedy annual Xanthium strumarium, and averaged 101 ftmol m" 2 s"1 across all species. Despite what at first glance would appear to be a wide range of estimates for the biochemical capacities that regulate CO2 assimilation, separating these species-specific results into those of broad plant categories revealed that Vcmax and Jmax were in general higher for herbaceous annuals than they were for woody perennials. For annuals, Vc^^ and Jmax averaged 75 and 154ftmol m~2 s"1, while for perennials these same two parameters averaged only 44 and 97/xmol m~2 s"1, respectively. Although these differences between groups may be coincidental, such an observation points to differences between annuals and perennials in either the availability or allocation of resources to the gas-exchange process.

read more

Citations
More filters
Journal ArticleDOI

The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.

TL;DR: Improved understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve the ability to predict ecosystem responses to rising [ CO2] and increase the potential to adapt crops and managed ecosystems to future atmospheric [CO 2].
Journal ArticleDOI

Improving Photosynthetic Efficiency for Greater Yield

TL;DR: Inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm are examined to more than double the yield potential of major crops.
Journal ArticleDOI

An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics

TL;DR: The Integrated Biosphere Simulator (IBIS) as mentioned in this paper is a terrestrial biosphere model that integrates a wide range of biophysical, physiological, and ecological processes in a single, physically consistent modeling framework.
Journal ArticleDOI

Simple scaling of photosynthesis from leaves to canopies without the errors of big‐leaf models

TL;DR: By separately integrating the sunlit and shaded leaf fractions of the canopy, a single layered sun/shade model is obtained, which is as accurate and simpler as a scaled version of a leaf model as distinct from an integrative approach.
Journal ArticleDOI

Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain

TL;DR: Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance, and the relative importance of both of these changes in maximizing carbon gain is quantified.
References
More filters
Book

SAS user's guide

Journal ArticleDOI

A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species

TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Journal ArticleDOI

Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves.

TL;DR: It was found that the response of the rate of CO2 Assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at lowand high inter cellular p (CO2).
Journal ArticleDOI

Photosynthesis and nitrogen relationships in leaves of C3 plants.

TL;DR: Surviving in certain environments clearly does not require maximising photosynthetic capacity for a given leaf nitrogen content, as variation reflects different strategies of nitrogen partitioning, the electron transport capacity per unit of chlorophyll and the specific activity of RuBP carboxylase.
Related Papers (5)