scispace - formally typeset
Journal ArticleDOI

Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization

A. Warshel, +1 more
- 01 Aug 1972 - 
- Vol. 94, Iss: 16, pp 5612-5625
TLDR
In this article, Levitt and Levitt developed a method for the consistent calculation of ground and excited state potential surfaces of conjugated molecules, which is based on the formal separation of u and 7r electrons, the former being represented by an empirical potential function and the latter by a semi-empirical model of the Pariser-Parr-Pople type corrected for nearest-neighbor orbital overlap.
Abstract
A formulation is developed for the consistent calculation of ground and excited state potential surfaces of conjugated molecules. The method is based on the formal separation of u and 7r electrons, the former being represented by an empirical potential function and the latter by a semiempirical model of the Pariser-Parr-Pople type corrected for nearest-neighbor orbital overlap. A single parameter set is used to represent all of the molecular properties considered; these include atomization energies, electronic excitation energies, ionization potentials, and the equilibrium geometries and vibrational frequencies of the ground and excited electronic states, and take account of all bond length and bond angle variations. To permit rapid determination of the potential surfaces, the u potential function and SCF-MO-CI energy of the r electrons are expressed as analytic functions of the molecular coordinates from which the first and second derivatives can be obtained. Illustrative applications to 1,3butadiene, 1,3,5-hexatriene, a,w-diphenyloctatetraene, and 1,3-cyclohexadiene are given. detailed interpretation of electronic transitions and A concomitant photochemical processes in conjugated molecules requires a knowledge of the ground and excited state potential surfaces. The determination of such surfaces has long been a goal of theoretical chemistry. Difficulties in a reliable a priori approach to the problem for a system as simple as ethylene2 are such that calculations for more complicated molecules are prohibitive at present. Consequently, a variety of methods that utilize experimental data have been introduced. Completely empirical treatments, in which the energy surface is expressed as a function of potential parameters fitted to the available information (1) Supported in part by Grant EY00062 from the National Institute of Health. (2) U. Kaldor and I. Shavitt, J . Chem. Phys., 48, 191 (1968); R. J. Buenker, S. D. Peyerimhoff, and W. E. Kammer, ibid., 55, 814 (1971). (equilibrium geometry, vibrational frequencies, etc.), have had considerable success in applications to molecules for which a localized electron description is app l i~ab le .~ The great advantage of this type of approach, which leaves open questions of reliability when extended from one class of molecules to another, is the ease and speed of the calculations; this had made possible applications to systems as large as certain nucleic acids and globular proteins. For conjugated molecules, however, the importance of delocalization introduces difficulties into such an empirical treatmenL5 (3) (a) See, for example, J. E. Williams, P. J . Stand, and P. v. R. Schleyer, Annu. Reu. Phys. Chem., 19, 531 (1969); (b) S. Lifson and A. Warshel, J . Chem. Phys., 49, 5116 (1968); A. Warshel and S . Lifson, ibid., 53, 8582 (1970). (4) M. Levitt and S. Lifson, J. Mol. B i d , 46, 269 (1969); M. Levitt, Nature (London), 224, 759 (1969). ( 5 ) C. Tric, J . Chem. Phys., 5 1 , 4778 (1969). Journal of the American Chemical Society 1 94:16 1 August 9, 1972

read more

Citations
More filters
Book ChapterDOI

Large-Scale Quantum Chemical Calculation

TL;DR: In this paper, the application of quantum chemical methods to huge systems based on the fragmentation methods is discussed, and the features of calculation methods from the viewpoint of computer use are introduced.
Journal ArticleDOI

Computer modeling of components of photoreceptor systems

TL;DR: In this article, the authors applied computational methods of molecular modeling, including quantum chemistry, molecular dynamics, as well as multilevel quantum mechanics/molecular mechanics (QM/MM) approaches to study fragments of selected photoreceptor systems.
Journal ArticleDOI

Semiempirical configuration interaction calculations in biochemical environments: parametrization and application to γD-crystallin, an eye-lens protein.

TL;DR: This work approaches the problem of optical excitations in molecular aggregates in complex biochemical environments from a computational, all-atom perspective, giving a first insight into the potential temporal evolution of these excitations.
Book ChapterDOI

Environmental Effects on Processes of Excited Molecules-External Spinorbit Coupling Effects on Photochemical Reactions of Bianthrone-Like Molecules

TL;DR: In this article, the effect of external spinorbit coupling enhancement on photochemical reactions has been investigated and shown to be very large in photoisomerization of bianthrone-like molecules.
Related Papers (5)