scispace - formally typeset
Journal ArticleDOI

Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions.

TLDR
The sulfate radical pathway of the room-temperature degradation of two phenolic compounds in water is reported, and it provides strong evidence on the interaction of chloride ions with sulfate radicals leading to halogenation of organics in water.
Abstract
The sulfate radical pathway of the room-temperature degradation of two phenolic compounds in water is reported in this study. The sulfate radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from the transformation of 2,4-dichlorophenol were 2,4,6-trichlorophenol, 2,3,5,6-tetrachloro-1,4-benzenediol, 1,1,3,3-tetrachloroacetone, pentachloroacetone, and carbon tetrachloride. Those resulting from the transformation of phenol in the presence of chloride ion were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 1,1,3,3-tetrachloroacetone, and pentachloroacetone. In the absence of chloride ion, phenol transformed into 2,5-cyclohexadiene-1,4-dione (quinone), 1,2-benzenediol (catechol), and 1,4-benzenediol (hydroquinone). Several parameters were varied, and their impact on the transformation of the organic compounds is also discussed. The parameters varied were the initial concentration of the organic substrate, the dose of Oxone used, the cobalt counteranion, and in particular the impact of chloride ions and the quenching agent utilized for terminating the reaction. This is one of the very few studies dealing with intermediates formed via sulfate radical attack on phenolic compounds. It is also the first studythat explores the sulfate radical mechanism of oxidation, when sulfate radicals are generated via the Co/Oxone reagent. Furthermore, it provides strong evidence on the interaction of chloride ions with sulfate radicals leading to halogenation of organics in water.

read more

Citations
More filters
Journal ArticleDOI

Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs.

TL;DR: The findings of this study elucidated a new pathway of persulfate activation, which could degrade environmental contaminants efficiently and provide useful information for the remediation of contaminated soil and water by Persulfate.
Journal ArticleDOI

Nitrogen-Doped Graphene for Generation and Evolution of Reactive Radicals by Metal-Free Catalysis

TL;DR: The sample of NG-700, obtained at a calcination temperature of 700 °C, showed the highest efficiency in degradation of phenol solutions by metal-free catalytic activation of peroxymonosulfate (PMS).
Journal ArticleDOI

Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition.

TL;DR: The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
Journal ArticleDOI

Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants.

TL;DR: It was shown that graphene catalysis is superior to that on transition metal oxide (Co(3)O(4)) in degradation of phenol, 2,4-dichlorophenol (DCP) and a dye in water, therefore providing a novel strategy for environmental remediation.
Journal ArticleDOI

Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

TL;DR: It is reported that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals and shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products.
References
More filters
Journal ArticleDOI

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution

TL;DR: In this article, rate constants have been compiled for reactions of various inorganic radicals produced by radiolysis or photolysis, as well as by other chemical means in aqueous solutions.
Journal ArticleDOI

Radical generation by the interaction of transition metals with common oxidants.

TL;DR: Nine transition metals were tested for the activation of three oxidants and the generation of inorganic radical species such as sulfate, peroxymonosulfate, and hydroxyl radicals to postulate the rate-determining step of the redox reactions taking place when a metal is coupled with an oxidant in aqueous solution.
Journal ArticleDOI

Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.

TL;DR: The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.
Journal ArticleDOI

Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds

TL;DR: In this paper, the exact rate constants for.SO/sub 4/sup -/ with substituted benzenes and benzoates have been determined by pulse radiolysis.
Journal ArticleDOI

Transition metal/UV-based advanced oxidation technologies for water decontamination

TL;DR: In this paper, the effect of ultraviolet (UV) light radiation and/or transition metals (M) for the activation of common oxidants (Ox) with the objective of treating recalcitrant organic contaminants in water was explored.
Related Papers (5)