scispace - formally typeset
Journal ArticleDOI

Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions.

TLDR
The sulfate radical pathway of the room-temperature degradation of two phenolic compounds in water is reported, and it provides strong evidence on the interaction of chloride ions with sulfate radicals leading to halogenation of organics in water.
Abstract
The sulfate radical pathway of the room-temperature degradation of two phenolic compounds in water is reported in this study. The sulfate radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from the transformation of 2,4-dichlorophenol were 2,4,6-trichlorophenol, 2,3,5,6-tetrachloro-1,4-benzenediol, 1,1,3,3-tetrachloroacetone, pentachloroacetone, and carbon tetrachloride. Those resulting from the transformation of phenol in the presence of chloride ion were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 1,1,3,3-tetrachloroacetone, and pentachloroacetone. In the absence of chloride ion, phenol transformed into 2,5-cyclohexadiene-1,4-dione (quinone), 1,2-benzenediol (catechol), and 1,4-benzenediol (hydroquinone). Several parameters were varied, and their impact on the transformation of the organic compounds is also discussed. The parameters varied were the initial concentration of the organic substrate, the dose of Oxone used, the cobalt counteranion, and in particular the impact of chloride ions and the quenching agent utilized for terminating the reaction. This is one of the very few studies dealing with intermediates formed via sulfate radical attack on phenolic compounds. It is also the first studythat explores the sulfate radical mechanism of oxidation, when sulfate radicals are generated via the Co/Oxone reagent. Furthermore, it provides strong evidence on the interaction of chloride ions with sulfate radicals leading to halogenation of organics in water.

read more

Citations
More filters
Journal ArticleDOI

Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process

TL;DR: In this paper, the degradation of ciprofloxacin (CIP) by activated persulfate with three-dimensional C@ZnCo2O4 (3DC@ZCO) under microwave irradiation was investigated.
Journal ArticleDOI

Clinoptilolite mediated activation of peroxymonosulfate through spherical dispersion and oriented array of NiFe2O4: Upgrading synergy and performance.

TL;DR: This study put forward a green and promising technology for high-toxic wastewater treatment by immobilization of nickel ferrite nanoparticles on the clinoptilolite surface via typical citric acid combustion method and the hybrid catalyst exhibited enhanced peroxymonosulfate (PMS) activation efficiency and bisphenol A (BPA) degradation performance.
Journal ArticleDOI

Enhanced atrazine degradation in the Fe(III)/peroxymonosulfate system via accelerating Fe(II) regeneration by benzoquinone

TL;DR: In this paper , p-benzoquinone (BQ) could accelerate Fe(III)/Fe(II) cycle and promote atrazine (ATZ) degradation in the Fe( III)/peroxymonosulfate (Fe(III/PMS) system through reconstructing active Fe(II)/PMS system.
Journal ArticleDOI

Degradation of 2,4-dichlorophenol by CuO-activated peroxydisulfate: Importance of surface-bound radicals and reaction kinetics.

TL;DR: The results suggested that the overall reaction kinetics of 2,4-DCP degradation was regulated by the adsorption of PDS onto CuO and the electron transfer between surface Cu and adsorbed PDS to form surface-bound SO4-.
Journal ArticleDOI

Efficient removal of organic pollutants by a Co/N/S-doped yolk-shell carbon catalyst via peroxymonosulfate activation

TL;DR: In this article , dual-shelled Co, N, and S codoped hollow carbon nanocages were developed by wrapping zeolitic imidazolate framework-67 (ZIF-67) with trithiocyanuric acid (TCA) and performing subsequent carbonization.
References
More filters
Journal ArticleDOI

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution

TL;DR: In this article, rate constants have been compiled for reactions of various inorganic radicals produced by radiolysis or photolysis, as well as by other chemical means in aqueous solutions.
Journal ArticleDOI

Radical generation by the interaction of transition metals with common oxidants.

TL;DR: Nine transition metals were tested for the activation of three oxidants and the generation of inorganic radical species such as sulfate, peroxymonosulfate, and hydroxyl radicals to postulate the rate-determining step of the redox reactions taking place when a metal is coupled with an oxidant in aqueous solution.
Journal ArticleDOI

Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.

TL;DR: The advantage of Co/PMS compared to the traditional Fenton Reagent is attributed primarily to the oxidizing strength of the radicals formed, since sulfate radicals are stronger oxidants than hydroxyl and the thermodynamics of the transition-metal-oxidant coupling.
Journal ArticleDOI

Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds

TL;DR: In this paper, the exact rate constants for.SO/sub 4/sup -/ with substituted benzenes and benzoates have been determined by pulse radiolysis.
Journal ArticleDOI

Transition metal/UV-based advanced oxidation technologies for water decontamination

TL;DR: In this paper, the effect of ultraviolet (UV) light radiation and/or transition metals (M) for the activation of common oxidants (Ox) with the objective of treating recalcitrant organic contaminants in water was explored.
Related Papers (5)