scispace - formally typeset
Search or ask a question
JournalISSN: 0926-3373

Applied Catalysis B-environmental 

Elsevier BV
About: Applied Catalysis B-environmental is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Catalysis & Photocatalysis. It has an ISSN identifier of 0926-3373. Over the lifetime, 14138 publications have been published receiving 1122770 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Abstract: The mass production of proton exchange membrane (PEM) fuel-cell-powered light-duty vehicles requires a reduction in the amount of Pt presently used in fuel cells. This paper quantifies the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state-of-the-art platinum electrocatalysts using two different testing procedures to clearly establish the relative merit of candidate catalysts. A pathway to meet the automotive goals is charted, involving the further development of durable, high-activity Pt-alloy catalysts. The history, status in recent experiments, and prospects for Pt-alloy cathode catalysts are reviewed. The performance that would be needed for a cost-free non-Pt catalyst is defined quantitatively, and the behaviors of several published non-Pt catalyst systems (and logical extensions thereof), are compared to these requirements. Critical research topics are listed for the Pt-alloy catalysts, which appear to represent the most likely route to automotive fuel cells.

4,298 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.

3,692 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the electrochemical methods used at lab and pilot plant scale to decontaminate synthetic and real effluents containing dyes, considering the period from 2009 to 2013, as an update of our previous review up to 2008.
Abstract: As the environment preservation gradually becomes a matter of major social concern and more strict legislation is being imposed on effluent discharge, more effective processes are required to deal with non-readily biodegradable and toxic pollutants. Synthetic organic dyes in industrial effluents cannot be destroyed in conventional wastewater treatment and consequently, an urgent challenge is the development of new environmentally benign technologies able to mineralize completely these non-biodegradable compounds. This review aims to increase the knowledge on the electrochemical methods used at lab and pilot plant scale to decontaminate synthetic and real effluents containing dyes, considering the period from 2009 to 2013, as an update of our previous review up to 2008. Fundamentals and main applications of electrochemical advanced oxidation processes and the other electrochemical approaches are described. Typical methods such as electrocoagulation, electrochemical reduction, electrochemical oxidation and indirect electro-oxidation with active chlorine species are discussed. Recent advances on electrocatalysis related to the nature of anode material to generate strong heterogeneous OH as mediated oxidant of dyes in electrochemical oxidation are extensively examined. The fast destruction of dyestuffs mediated with electrogenerated active chlorine is analyzed. Electro-Fenton and photo-assisted electrochemical methods like photoelectrocatalysis and photoelectro-Fenton, which destroy dyes by heterogeneous OH and/or homogeneous OH produced in the solution bulk, are described. Current advantages of the exposition of effluents to sunlight in the emerging photo-assisted procedures of solar photoelectrocatalysis and solar photoelectro-Fenton are detailed. The characteristics of novel combined methods involving photocatalysis, adsorption, nanofiltration, microwaves and ultrasounds among others and the use of microbial fuel cells are finally discussed.

3,112 citations

Journal ArticleDOI
TL;DR: In this article, the TiO2/UV photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous suspensions, and it has been shown that the degradation pathway can be determined by a careful identification of intermediate products, in particular aromatics, whose successive hydroxylations lead to the aromatic ring opening.
Abstract: The TiO2/UV photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous suspensions. In addition to a prompt removal of the color, TiO2/UV-based photocatalysis was simultaneously able to oxidize the dye, with an almost complete mineralization of carbon and of nitrogen and sulfur heteroatoms into CO2 ,N H4 + ,N O3 − and SO4 2− , respectively. A detailed degradation pathway has been determined by a careful identification of intermediate products, in particular aromatics, whose successive hydroxylations lead to the aromatic ring opening. These results suggest that TiO2/UV photocatalysis may be envisaged as a method for treatment of diluted waste waters in textile industries. © 2001 Elsevier Science B.V. All rights reserved.

2,359 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023770
20221,309
20211,146
20201,067
20191,093
20181,036